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ABSTRACT
Labeled datasets are essential for supervised machine learning.
Various data labeling tools have been built to collect labels in dif-
ferent usage scenarios. However, developing labeling tools is time-
consuming, costly, and expertise-demanding on software develop-
ment. In this paper, we propose a conceptual framework for data
labeling and OneLabeler based on the conceptual framework to
support easy building of labeling tools for diverse usage scenarios.
The framework consists of common modules and states in labeling
tools summarized through coding of existing tools. OneLabeler sup-
ports configuration and composition of common software modules
through visual programming to build data labeling tools. A mod-
ule can be a human, machine, or mixed computation procedure in
data labeling. We demonstrate the expressiveness and utility of the
system through ten example labeling tools built with OneLabeler.
A user study with developers provides evidence that OneLabeler
supports efficient building of diverse data labeling tools.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Information systems → Multimedia information sys-
tems.

KEYWORDS
data labeling, framework, toolkit, interactive machine learning,
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1 INTRODUCTION
Labeled datasets play an essential role in supervised machine learn-
ing. Modern neural networks are generally trained with large la-
beled datasets. Data labeling typically involves human annotators.
Many data labeling tools have been built to enable annotators to
label data objects of various types for various learning tasks (e.g.,
classification [36, 53], segmentation [2]) in different application
domains (e.g., image [19, 64], text [18, 62], video [21, 43]). These
tools are generally built for a specific labeling task. Different types
of labeling tasks require individually built labeling tools.

Building customized labeling tools for various applications is
challenging. Programming a labeling tool generally requires cross-
disciplinary knowledge on interaction techniques and visual design,
algorithmic techniques such as active learning and semi-automatic
labeling, and software development skills to implement and com-
pose all these modules into a labeling tool. It is time-consuming
and costly. Although many labeling tools have been built, most
of them are monolithic applications with limited usage scenarios
and are not designed to support further editing and customization.
Adapting an existing tool to fulfill a new labeling task with new
requirements is generally difficult.

Meanwhile, labeling tools for different labeling tasks share com-
monalities. To alleviate the burden of building labeling tools, we
advocate a modular composable design that extracts the common-
alities among different labeling tools to enable easy customization
and extension. In this paper, we present a conceptual data labeling
framework with a modular composable design. We have identi-
fied eight types of common modules through inductive coding of
modules in existing data labeling tools. The framework consists of
common conceptual modules and constraints in composing these
modules. In the framework, a data labeling tool is modeled as a
graph denoting its workflow. In the graph, modules are nodes, and
the execution order of the modules is encoded with directed edges.

Based on the framework, we develop OneLabeler, a system for
building data labeling tools. OneLabeler is designed with reusabil-
ity and flexibility in mind. It enables visual programming to com-
pose and configure software modules. Developers can build a data
labeling tool by creating a workflow graph using built-in imple-
mentations of the conceptual modules. In a created labeling tool,
interface modules and algorithm modules can be instantiated as hu-
man, machine, or mixed computation procedures. The constraints
on composing modules are embedded in a static program checker
to check the workflow graph and verify the feasibility of the created
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labeling tool. A labeling tool built with OneLabeler can be exported
as an installer of the tool for sharing.

To demonstrate the expressiveness of the proposed framework
and system, we present a case study of ten tools built with OneLa-
beler. These tools cover various usage scenarios, including a set of
typical labeling tools for different data types and labeling tasks, a
classification tool for a customized webpage data type, a machine-
aided multi-task text labeling tool, a mixed-initiative image clas-
sification tool, and prototyping an interactive machine learning
system for chart image reverse engineering. To examine OneLa-
beler’s usability, we conduct a user study in which developers are
asked to accomplish four tasks on building data labeling tools with
OneLabeler. The study results indicate that OneLabeler is easy to
learn and use, enabling developers to efficiently build different data
labeling tools.

This paper has the following major contributions:

• We propose a conceptual framework that illuminates common
conceptual modules and composition constraints in data labeling.

• We develop the OneLabeler system based on the framework to
support easy building of diverse data labeling tools.

• We conduct an extensive case study to demonstrate the capability
of OneLabeler in creating diverse data labeling tools, as well as a
user study to validate the usability of OneLabeler.

OneLabeler’s source code can be found at https://github.com/
microsoft/OneLabeler.

2 RELATEDWORK
2.1 Data Labeling Tools
Due to the importance of labeled data for supervised machine learn-
ing, various labeling tools have been proposed for different applica-
tions. For example, LabelMe [59] is a labeling tool for image object
detection, wherein an annotator can label objects through bounding
boxes and polygons. VoTT [49] supports bounding box and poly-
gon annotation in images and video frames. Labelbox [38] enables
annotation for classification, segmentation, and object detection
in images and videos. VIA [24] allows annotators to label spatial
regions and temporal segments in images, audios, and videos. These
tools require intensive human labeling efforts.

Various techniques focus on reducing human efforts, typically
through integration of machine assistance for semi-automatic label-
ing. ISSE [13] algorithmically suggests refined segmentation to help
annotators separate sound into its respective sources by painting
on time-frequency visualizations. Fluid Annotation [2] uses a pre-
trained model to propose a set of possibly-overlapping segments to
help annotate image segmentation. V-Awake [29] focuses on time
series segmentation. It uses LSTM to assign tentative labels and
visualizes the model information to help annotators diagnose and
correct model predictions.

Another family of techniques commonly used in labeling tools is
active learning that focuses on prioritizing user efforts. It has been
used for labeling documents [36, 62] and geometric objects [85].
In a similar vein, Deng et al. propose a strategy to select data
objects to label that maximize annotation’s utility-to-cost ratio
in multi-label classification [22]. While active learning focuses on
algorithmic selection strategies, the selection may also involve

user feedback [53]. For example, projection scatterplots with iso-
contours visualizing label uncertainty have been used to assist users
in data selection [43].

Aside from semi-automatic labeling and active learning address-
ing algorithmic aspects, novel interaction and visual design are
proposed to support efficient labeling. Clustering is frequently used
in data labeling tools [19, 65]. Similar data objects that likely share
the same label can be grouped to batch their labeling [64]. Me-
diaTable [21] combines automatic content analysis and a tabular
interface providing focus+context in image and video labeling. Choi
et al. [18] highlight keywords that imply document sentiment, iden-
tified by the attention mechanism of LSTM, to aid annotators.

Another branch of study focuses on designing tasks assigned
to annotators. A prominent example is gaming with a purpose
(GWAP) [69] in which annotators are instructed to play games
to implicitly contribute data labels. Techniques in this category,
such as ESP game [68] and Peekaboom [70], focus on the gameplay
design that strives to motivate annotators. Another example is
embedding labeling tasks in human/bot verification [71, 77]. A
large body of work on crowdsourcing annotations relates to task
design, which typically focuses on task assignment schemes to
collect high-quality labels with low cost and latency [15].

Despite the diversity in labeling tools, common themes exist,
such as using semi-automatic labeling and active learning to save
annotation efforts. These commonalities lay the foundation for
our efforts described in Section 4 to summarize shared conceptual
modules across data labeling tools.

2.2 Workflows in Data Labeling
Research efforts have also been directed to design patterns for la-
beling tools, typically in the form of generic workflows composed
of conceptual modules. Settles’ active learning survey describes
a typical pool-based active learning cycle with algorithmic query
selection, human annotation, and model training [61]. Wang and
Hua survey the use of active learning in multimedia data anno-
tation and retrieval, and summarize three schemes: conventional
active learning, multiple-instance active learning, and large-scale
interactive annotation [73]. Höferlin et al. introduce a workflow
that extends the conventional active learning workflow with user
selection and model manipulation [31]. Bernard et al.’s workflow
integrates interactive visualization components [6]. Zhang et al.
propose a workflow that features algorithmic sampling and default
labeling [85].

Similar to the literature on generic workflows, we aim to summa-
rize design patterns in labeling tools. Instead of a single workflow,
our solution is a generative framework for building workflows. We
believe that a single workflow cannot be optimal for all usage sce-
narios. Meanwhile, our framework builds on existing workflows, as
they are included in the corpus for summarizing common modules
through coding (in Section 4).

Our work falls into the family of toolkit research in HCI [39]
that contributes techniques for building new tools. Examples in this
body of research related to our work are the ones that assist the
development of visual interfaces [8, 48, 56]. Meanwhile, to the best
of our knowledge, there exists no literature on extensible systems
for building data labeling tools. A relevant thread of work that also
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aims to save the cost of developing labeling tools is data labeling
platforms and systems that support multiple labeling applications.
Examples include the project templates of Amazon Mechanical
Turk [1] and Prodigy [26]. While the template-based approach can
address a number of common use cases, extending to new usage
scenarios requires implementing new templates from scratch, and
reuse of software modules is not supported. LabelStudio [67] also
provides a collection of templates but with more flexibility. While
it allows the user to use active learning and pre-labeling in the
labeling interface, customizing interface modules in LabelStudio is
difficult. OneLabeler also aims to promote reuse as these systems
but focuses on reuse at the module level instead of template level.
Additionally, building on the conceptual framework, OneLabeler
supports a more extensive coverage of data labeling techniques.

3 DESIGN REQUIREMENTS
Various scenarios require deploying different labeling tools to col-
lect labels, but developing an effective labeling tool is generally
challenging and costly. We see an opportunity to alleviate develop-
ers’ efforts through modular composable design for reuse, as there
are commonalities in labeling tools. We aim to develop a flexible
system to enable easy building of various data labeling tools. To
better understand pain points in developing labeling tools, we in-
terviewed three experts with expertise in developing labeling tools
as an informal pilot study.

3.1 Pilot Study
The three experts we interviewed have developed labeling tools for
a company-owned research institute, two with the machine learn-
ing (ML) background (E1, E2) and one with the HCI background
(E3). They have 8 to 12 years of programming experience. E1 has
developed labeling tools for image object detection and binary clas-
sification. E2 has developed text labeling tools for relation detection
between tables and documents. E3 has developed an image labeling
tool for multi-label classification. The study started with a struc-
tured interview with questions concerning participants’ experience
of developing labeling tools. Example questions we asked include
“Why did you decide to implement a data labeling software instead
of using existing ones?” and “What functionalities do you think are
critical for data labeling software?” Then, we conducted a walk-
through demonstration of an early prototype of OneLabeler with
rudimentary functionalities.

Through the interview, we observed that no participant ever used
public labeling software in their projects due to their application-
specific requirements. E1 mentioned that he needed to integrate
a customized rule to forbid labeling the same data object twice
in an image, which could not be achieved in existing tools. E2
mentioned that the text datasets for the labeling tools he developed
were stored in different types of structured data (e.g., document,
table, webpage) and required different types of structured labeling.
We conclude that customized labeling tools are needed to address
application-specific requirements.

Developing a data labeling tool is time-consuming. It takes 7 to
30 man-days for an experienced engineer to develop one accord-
ing to the participants’ experience. Regarding the three labeling
tools he had developed, E2 commented: “... the interface modules

for displaying data points are similar. They all display the table to be
annotated, and the supported interactions for annotating the table are
similar.” This comment implies that labeling tools share commonal-
ities, but facilitating reuse requires a careful software design. Like
other software development, iteration is needed for labeling tools.
E1 commented: “The customized rules typically need to go through
many iterations as the ML project progresses.” Similarly, E3 said, “I
didn’t know the label categories at the beginning and was not sure
about the labeling task that I needed to carry out. Thus, I need to be
able to refine the data labeling interface correspondingly as I gradu-
ally get more annotations.” Finishing a functional labeling tool is not
the end of development, as it frequently needs to undergo further
editing. We conclude that building labeling tools is time-consuming
and needs iterations. Meanwhile, there is an opportunity to save
the development cost, as labeling tools share commonalities.

While E1 and E2, both from the ML background, regarded the
annotation interface design and implementation of annotation in-
teraction as the hardest part, E3 from the HCI background regarded
algorithm modules as the hardest to implement. We conclude that
grasping all required techniques for implementing a data labeling
tool can be difficult for labeling tool developers since it may involve
cross-disciplinary knowledge. Visual programming can help reduce
the skill barrier on labeling tool development in this case [35].

All of the three experts said they would be happy to use OneLa-
beler if their labeling tasks were supported. They worked on label
tasks of image, video, and text. We conclude that the system should
build in various modules to support different label tasks for good
coverage of usage scenarios.

3.2 Design Principles and Requirements
The interview confirms the need for a system to support easily
building and modifying labeling tools for different labeling tasks
and application-specific requirements. To achieve this goal, we
settle on the following design principles for the system:

• DP1: Modular composable design and reuse at multiple
levels. To exploit shared commonalities among labeling tasks and
to facilitate reuse and modification, the system should be based
on a modular composable design to enable building labeling tools
with composable primitives. Primitives should have low coupling.
Reuse low-level implementations as composable primitives, while
reuse high-level implementations as editable templates. These
reuses can significantly reduce the development time and efforts.

• DP2: Ease building and guide the development process. To
reduce the skill barrier, the system should facilitate easy build-
ing of labeling tools through visual configuration and guiding
developers towards feasible solutions.

Based on the design principles, we propose the following specific
requirements for our OneLabeler system. R1, R2, and R3 meet
DP1, while R4 and R5 meet DP2.

• R1: Unified module APIs. Software modules (i.e., interface
modules and algorithm modules) should implement unified APIs.
Each API should represent a family of common modules in la-
beling tools. Unified APIs allow substituting a software module
in a labeling tool or extending the system with a new module
without changing other modules (i.e., separation of concerns). In



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhang et al.

this way, unified APIs make it easier to extend and customize
software modules.

• R2: Module composition. The system should support compo-
sition of modules to allow a rich space of labeling tools to be
created (i.e., good coverage of usage scenarios) with a small num-
ber of primitives. Especially, algorithm and interface modules
should be composable, as labeling tools typically feature joint
efforts of humans and machines.

• R3: Reuse modules and tools. The system should build in com-
mon software modules to be reused as primitives and example
composed tools to be reused as boilerplate to scaffold building of
labeling tools, which can significantly ease building commonly
used labeling tools and enable extending and customizing built-in
label tools to fit application-specific requirements.

• R4: Visual programming. The system should support visual
programming to enable developers to reuse software modules
and compose workflows with no or minimal textual coding. La-
beling tool development requires cross-disciplinary knowledge.
A developer may not be proficient with every part of the required
technology stacks. Visual programming can reduce the develop-
ment barrier in such scenarios. It has become a common practice
in enterprise machine learning services (e.g., Microsoft Azure1
and Amazon Web Services2). Moreover, the diagram in visual
programming provides an overview of the developed system that
assists the development process.

• R5: Static checking. The system should support static checking
to detect infeasible configurations and recommend their fixes
to guide editing actions during workflow creation. It enables a
developer to spot and localize bugs at an early stage without
running the program and guides the developer to reach a feasible
solution quickly.

A critical step to fulfill these design requirements is exploitation of
commonalities in various labeling tools. This is discussed in the next
section, where we identify common APIs (R1), common software
modules for reuse (R3), and common constraints for composing
modules (R2, R5).

4 DECOMPOSING LABELING TOOLS
To facilitate fast and easy development of labeling tools, our system
should build on a modular design. To design APIs with expressive-
ness and a suitable level of abstraction, we consult decomposition of
labeling tool modules in the literature. In the following, we describe
the common conceptual modules and states identified through in-
ductive coding of the literature. Each module, together with its
input and output states, defines a unified API for a family of tech-
niques (R1). For each module, we give examples of its instances that
can serve as software modules in labeling tools (R3). An instance
of the module corresponds to an implementation satisfying the API.
The constraints in composing the modules in building labeling tools
are described at the end of the section. The constraints guide the
module composition (R2) and facilitate static checking (R5).

1https://azure.microsoft.com/services/machine-learning
2https://aws.amazon.com/sagemaker/

4.1 Methodology
To identify common conceptual modules, we use data labeling
flowcharts in the literature as the dataset and summarize common
themes of modules and states of labeling tools. The rationale is
that flowcharts depict cautious decomposition of software into
executable modules by the authors. Commonalities in the decompo-
sitions likely imply modules with high cohesion and low coupling.

We start with 76 papers on labeling tools and methods published
between 2003 and 2021, collected from venues in human-computer
interaction, visualization, multimedia, and machine learning. The
full list of the papers is provided in the supplementary material.
For each paper, we extract flowchart figures describing data label-
ing workflows, which can be application-specific or generic. We
discard the papers without flowchart figures, and obtain a dataset
of 36 flowchart figures extracted from 33 papers (2 of them contain
multiple flowchart figures).

We conduct an inductive coding of the extracted 36 flowcharts
with two stages. In the first stage, we extract the tagged phrases
from each flowchart and categorize them into “module” (human,
machine, and mixed computation process) and “state” (input and
output). The phrases form preliminary sets of module codes and
state codes for that flowchart. For example, Crayons [27] supports
image pixel-level segmentation with a flowchart containing five
phrases. Four of them (“train”, “classify”, “feedback to designer”,
and “manual correction”) are categorized as preliminary codes for
modules because they describe actions and are placed inside blocks
in the flowchart figure, while one of them (“interactive use”) is
excluded as it is a modifier of another phrase.

In the second stage, we group the preliminary codes collected
from all the flowcharts into themes. The grouping is not mutu-
ally exclusive. We further remove the themes outside the scope of
data labeling (e.g., “model understanding” is removed), and merge
themes when necessary to synthesize a final code for each theme.
The final module/state codes are generated from representative
preliminary codes and normalized into short noun phrases describ-
ing an action/variable. For example, “classify” in Crayons [27] is
finally grouped into the theme “default labeling”, and this theme
also serves as its final code.

4.2 Results
After the first stage of the coding process, we obtain 188 and 163
preliminary codes for module and state, respectively. For each coded
flowchart figure, the number of preliminary module codes ranges
between 1 and 11 (𝑚𝑒𝑎𝑛 = 5.22, 𝑆𝐷 = 2.25), and the number of
preliminary state codes ranges between 0 and 10 (𝑚𝑒𝑎𝑛 = 4.53,
𝑆𝐷 = 2.61). After the second stage, we identify five final codes for
states (sorted by frequency as marked):
• Data Objects: the list of entities to be labeled (59/163).
• Labels: the list of annotations assigned to entities (57/163).
• Samples: an entity subset annotators handle at a time (18/163).
• Model: one or multiple machine-learned models (18/163).
• Features: the list of feature representations of entities (13/163).
Similarly, we identify eight final codes for modules: interactive
labeling, data object selection,model training, feature extrac-
tion, default labeling, quality assurance, stoppage analysis,
and label ideation, which are to be introduced in details in the next
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subsection. The occurrences of the final codes in the 36 flowcharts
are summarized in Appendix A (Table 2 and Table 3), and the de-
tailed coding results are included in supplementary material.

During the coding process, we have excluded several themes
of states and modules regarded as irrelevant to data labeling (see
Appendix A.1). For example, understanding the machine-learned
model does not directly benefit labeling, and thus we exclude
the “model understanding” theme, whose occurrences include the
phrase “understand” in Höferlin et al. [31]’s flowchart. Similarly,
the “data collection” theme refers to the process of collecting or
enlarging the dataset to be labeled. Its occurrences include the
phrase “video crawler” in Hua and Qi [33]’s flowchart. We exclude
it because of the low frequency (4 occurrences) and the ambiguity
of whether it should be regarded as a part of data labeling or a
preparation step before data labeling.

Combining the modules and states finally devised from the cod-
ing process, we further identified the common APIs in data labeling
tools, as depicted by Fig. 1. To ensure that every API has an output,
we add two additional states “categories” (output of “label ideation”)
and “stop” (output of “stoppage analysis”). API inputs are optional,
as a softwaremodule implementing an APImay utilize some or even
none of the inputs available. These API definitions are integrated
in OneLabeler (described in Section 5).

Figure 1: Common APIs in data labeling tools.

4.3 Common Modules in Labeling Tools
The conceptual modules (sorted by frequency as marked) and their
instances as software modules are described below. An instance can
be an algorithm (i.e., a machine computation process), an interface
module involving human computation, or a mixed computation
process.
• Interactive Labeling (49/188) is the core module where annota-
tors carry out labeling tasks in an interface (Fig. 1a). Different
instances of this module typically vary in the design of task,
interface, and interaction. Task design concerns the task that an-
notators are instructed to carry out. Typical tasks include label
assignment and correction tasks for the concerned data type
(e.g., image, text) and label task type (e.g., classification, segmen-
tation). Alternatives include GWAP instructing annotators to
play a game [68–70]. When strong labels (e.g., segmentation)
are needed, using weakly supervised learning may allow anno-
tators to provide weak labels (e.g., classification) that are then
algorithmically compiled to strong labels, potentially improving
labeling efficiency [10]. Additionally, various research efforts in
crowdsourcing concern task scheme design [16]. Interface design

typically concerns data objects’ layout such as grid matrix and
hierarchical layout [19, 81]. Tasks requiring fine-grained editing
may prefer displaying one data object each time [2, 59]. Interac-
tion design concerns interaction techniques facilitating efficient
labeling such as batch edit [64] and graph cut [9].

• Data Object Selection (34/188) determines the order for data ob-
jects to be selected and labeled by annotators (Fig. 1b). Instances
include active learning strategies that select informative data ob-
jects first [62]. The selection may also use clustering algorithms
to group similar data objects [19, 45], which may enable annota-
tors to assign the same label in one go. Annotators may involve
in deciding which data objects to label [14, 43].

• Model Training (21/188) trains/updates a learning model (that
may serve as input to other modules) with newly gathered la-
bels (Fig. 1c). Variations of model training may concern what
model is trained and how the training is conducted. Although
any predictive model may serve the purpose, semi-supervised
learning and transfer learning techniques better match data label-
ing scenarios, where unlabeled data objects are abundant (useful
for semi-supervised learning), and the cold start issue is promi-
nent (alleviated by transfer learning). Model training may be
conducted by training from scratch or by incremental update
methods in online learning.

• Feature Extraction (20/188) turns data objects into feature rep-
resentations, typically vectors (Fig. 1d), facilitating other modules
that cannot work with raw data objects (e.g., model training).
Algorithmic instances of feature extraction can be handcrafted
(e.g., HoG), unsupervised (e.g., PCA), or supervised (e.g., LDA). It
is also possible to involve annotators in feature extraction [17].

• Default Labeling (17/188) assigns tentative labels to data objects,
simplifying annotators’ work from creating labels to verification
and correction (Fig. 1e). It may be facilitated by models trained
with the model training module, pre-trained models, or rules.

• Quality Assurance (6/188) reviews label quality and corrects
erroneous labels (Fig. 1f). Algorithmic relabeling may be used to
suggest suspicious labels for annotators to verify [12, 51, 88]. An-
notators may also exploratorily review labels and search for po-
tentially mislabeled data objects to correct [4, 29, 75]. In mission-
critical applications, quality assurancemay require going through
all the labels one by one [86].

• Stoppage Analysis (4/188) decides whether to keep assigning
tasks to annotators or stop (Fig. 1g). A common criterion is to
check if all the data objects have been labeled once. Alternative
criteria may decide the stoppage time by empirical measures of
the label quality [22] or confidence [87] and stability of models [7,
84] trained with the partially labeled dataset.

• Label Ideation (3/188) develops the label categories used for
labeling (Fig. 1h). It may appear as an interfacewidget allowing an
annotator to create new categories ad hoc. More structured ways
to generate categories may involve algorithmic assistance (e.g.,
topic modeling) in an interface that supports users iteratively
propose, verify, and refine categories [28, 37].

Through the coding process, we observe that interactive labeling
is by far the most common module in labeling tools. It appears
49 times among the 188 codes extracted from the 36 flowcharts,
meaning that on average more than one module in each flowchart
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is related to interactive labeling. Any flowchart that strictly depicts
a data labeling workflow with human annotators would need to
mention it at least once.

4.4 Module Composition Constraints
Labeling tools can be built with instances of the conceptual modules
as building blocks. However, not all compositions of software mod-
ules produce a valid labeling tool. A labeling tool is represented
by a flowchart that contains module nodes, i.e., nodes denoting
implementation of common modules, as well as initialization, de-
cision, and exit nodes. Assuming that states of a labeling tool are
stored globally, modules fetch inputs from and register outputs to
corresponding global states.

The constraints for composing software modules into a valid
labeling tool are listed as follows:
• Valid Flowchart: The graph should satisfy graph-theoretic con-
straints that generally hold for a flowchart [34]. For example, all
the nodes should be reachable from the initialization node.

• Input Initialized: For each possible walk on the graph, a node
that represents a software module should not be visited until its
input parameters are all initialized.

• No Redundancy: After a module is visited, it should not be
revisited until at least one of its inputs has changed its value.
After a module is visited, its output(s) should be used by a module.

• Involve Labeling: Interactive labeling should exist in all walks
of the graph to ensure it depicts a workflow of a labeling tool.
The first two constraints (“valid flowchart” and “input initial-

ized”) are derived from the rationale that the flowchart should rep-
resent a correct program. The third constraint concerns efficiency
of the software. Labeling tools often require heavy human compu-
tation (e.g., manual annotation) and heavy machine computation
(e.g., model training), making performance optimization a critical
issue. The fourth constraint ensures that the represented software
is a labeling tool. These constraints translate to rigid propositions
(in Appendix B) and are integrated in OneLabeler’s static checking
function to validate user-created labeling workflows.

5 ONELABELER
Based on the requirements described in Section 3, we propose the
OneLabeler system for building labeling tools. OneLabeler enables
developers to visually program (R4) data labeling tools by compos-
ing software modules into a workflow (R2). A created labeling tool
can be exported as an installer. The conceptual modules identified
in Section 4 inform the API design for data labeling modules in
OneLabeler (R1). A developer can reuse a collection of built-in
modules and templates (R3) or customize on demand. OneLabeler’s
visual programming environment supports static checking (R5)
of user-created workflows to assist debugging and guide towards
feasible solutions.

5.1 System Architecture
5.1.1 Module. The eight types of conceptual modules (interactive
labeling, data object selection, model training, feature extraction,
default labeling, quality assurance, stoppage analysis, and label
ideation) are integrated into OneLabeler as eight API definitions
(R1). An API can be implemented with either an algorithm or

interface module. While an algorithm module can be automatically
executed, the execution of an interface module requires human
intervention. In the following, we use the data object selection
module as an example for illustration.
Defining a conceptual module as API: As shown in Fig. 1b, the
data object selection module conceptually depicts a function that
returns a dataset subset, given data objects, labels, features, model,
and samples. The inputs are optional. Schematically, it translates
to an API definition in OneLabeler as:

1 class DataObjectSelection {

2 /** Input states. */

3 props: ['dataObjects', 'labels', 'samples', 'model', 'features'];

4 /** Output state's setter, evoked in .render or .run. */

5 methods: ['setSamples'];

6 /** Whether the execution of the module is blocking or not. */

7 blocking: boolean;
8 /** (Optional) Only needed for an interface module. */

9 /** Whether to render the module when not executed. */

10 persistent?: boolean;
11 /** (Optional) Interface module implementation. */

12 render?: Function;
13 /** (Optional) Algorithm module implementation. */

14 run?: Function;
15 }

Executing amodule implementation: Conceptually, executing a
module implementation is to send it the input states and wait for the
output states to be returned. For example, the data object selection
API defined above can be implemented with an algorithm (e.g., an
active learning strategy) or a user interfacemodule (e.g., a projection
scatterplot as Fig. 6B1 where an annotator can select manually with
lasso). When the API is implemented as an algorithm, the execution
is a straightforward function call. When the API is implemented as
an interface, the execution is regarded as a function call that has a
side effect of altering the user interface. The function returns when
a callback function setting the returned states is triggered by user
interaction in the interface. For example, a projection scatterplot
(as Fig. 6B1) is regarded as a function that returns the selection
after the user finishes a lasso selection in the scatterplot. Data
object selection takes samples as an optional input because when
implementing it with a projection scatterplot, the scatterplot may
need to highlight the previous samples.
Input and output access: Each module fetches inputs and returns
outputs through getters and setters exposed by a global data model.
We refer to this storage model as a blackboard model as all the
modules read from the blackboard and write on the blackboard.
OneLabeler and labeling tools generatedwithOneLabeler follow the
model-view-controller (MVC) design pattern3. The seven states of
labeling tools in Fig. 1 are stored globally and managed by the data
model. The data fetching and storage are configurable in labeling
tools built with OneLabeler. It allows multiple annotators to use
installations of a labeling tool that have data access from the same
database, enabling simultaneous annotation by multiple annotators.

5.1.2 Workflow. To enable developers to create complex tools with
a small number of primitives, OneLabeler supports composition of
software modules into a workflow declaring a labeling tool (R2).

3To disambiguate, the (data) “model” here refers to the part of software responsible
for managing states (e.g., states in Fig. 1), instead of a machine learning “model”.
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Figure 2: OneLabeler’s visual programming interface: (A) Workflow canvas panel for a developer to create and compose nodes,
as well as editing the visual layout of the workflow; (B) Node configuration panel for configuring parameters of a selected node;
(C) Console panel for showing static checking result of whether the workflow denotes a valid labeling tool; (D) The variable
inspector panel showing state values; (E) The generated data labeling tool by OneLabeler according to the workflow.

Defining a workflow: Within OneLabeler, a labeling tool is de-
clared by its workflow graph with modules being nodes and execu-
tion order specified by directed edges. The graph can be either cre-
ated in OneLabeler through visual programming (see Section 5.2),
or uploaded to OneLabeler through a JSON file storing a list of
nodes and edges. A valid workflow graph has to satisfy constraints
described in Section 4.4. Unlike data flow systems [48, 79], directed
edges in OneLabeler only define execution order without implying
data transmission. Each module fetches inputs and returns outputs
through the global data model. Thus, for each directed edge, the
source node’s output is not necessarily the target node’s input.
Executing a workflow: To execute a workflow, OneLabeler tra-
verses the graph representing the workflow. The traversal starts
from the initialization node in the graph. OneLabeler recursively
visits subsequent nodes following directed edges. When a node cor-
responding to a module is visited, OneLabeler supplies the module’s
required inputs by reading the blackboard model, and executes the
module as a function. When the module is an interface module,
the interface is rendered in a window (e.g., Fig. 6B1 is a rendered
window for data object selection using interactive projection). By
default, OneLabeler waits for the function to return. After the func-
tion returns, OneLabeler registers the return value to the global
data model and then visits the next node. Alternatively, the module

can be optionally configured to be non-blocking, in which case
OneLabeler visits the next node before the function returns. When
the workflow is faithfully executed, the labeling tool’s interface
may constantly be changing because, after execution, an interface
module will no longer show up until the next visit. The “persistent”
option addresses this issue of the rapid context switch. For a “per-
sistent” interface module, the interface is persistently rendered in
the window even when the node is not executed. When a decision
node is visited, the decision criterion is checked, and the edge to fol-
low is chosen accordingly. The execution of the labeling workflow
terminates when the exit node is visited.

5.2 Visual Programming of Workflows
OneLabeler enables developers to build labeling tools through visual
programming of the labeling tools’ workflows (R4). The navigation
toolbar provides import/export and compilation functions through
button clicking (highlighted in Fig. 2 with red). The labeling tool’s
workflow can be imported/exported in the JSON format to facili-
tate reuse and sharing. A developer can use the built-in templates
provided in the template menu as a boilerplate to scaffold develop-
ment. When the workflow is finalized, the developer can click the
compile button on the navigation bar to compile the workflow into
an installer of the corresponding labeling tool.
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5.2.1 Visual Programming and Configuration. In OneLabeler, a data
labeling tool is declared by its workflow. To enable developers to
visually configure the workflow without textual programming (R4),
OneLabeler provides a visual programming interface (Fig. 2).Within
the interface, the developer can build a labeling tool by interactively
configuring its workflow.
Adding a node: Within the workflow canvas panel (Fig. 2A), the
developer can add nodes through the right-clickmenu on the canvas.
The menu provides module nodes and control nodes. The module
nodes belong to one of the eight types of conceptual modules (in
Section 4). The control nodes can be initialization, decision, and
exit nodes. After creating a module node, to make it executable, the
developer needs to configure the implementation used for the node,
as described below.
Composing nodes: Two nodes can be composed by creating a
directed edge to specify the execution order. To create an edge
between two nodes, the developer can hover on a node serving
as the source, which shows the link ports of the node, drag the
link port of the node, and release on the link port of another node
serving as target.
Configuring a node: To configure implementation details of a
node, the developer first needs to select a node in the workflow can-
vas panel through clicking. The node configuration panel (Fig. 2B)
shows the details for the selected node. The user can select the
built-in implementation of the node in the “implementation” menu
in the configuration panel. The parameters of the selected imple-
mentation can be configured on demand. For example, for the data
object selection module (as shown in Fig. 2B), the user can configure
which selection method to use (e.g., active learning or interactive
projection) and the parameters of the selected implementation (e.g.,
how many data objects to sample each time by the active learning
strategy). Additionally, outputs of the initialization node are con-
figurable. If a state is configured as initialization’s output, it will be
initialized to a non-empty value when initialization is executed.

5.2.2 Static Checking. To guide a developer smoothly towards a
feasible solution (i.e., a workflow that depicts a valid labeling tool),
we use the classic idea of static program analysis [3] in software de-
bugging (R5). The constraints (in Section 4.4) allow OneLabeler to
check the graph-theoretic properties of the workflow created by the
developer as a proxy of the feasibility of the created labeling tool.
Besides, we add practical constraints on the graph data structure
(e.g., node id should be unique) and on module configuration (i.e.,
an implementation should be chosen for the module). OneLabeler
integrates these constraints into a checker to statically validate the
created labeling tool. OneLabeler notifies the developer of identified
violations of the constraints in the console panel (Fig. 2C), allow-
ing the developer to identify potential mistakes before using the
created labeling tool. Hovering/Clicking an error message in the
console panel highlights/selects the node(s) and edge(s) involved
in the error in the workflow canvas panel. Clicking the triangular
expand button on the error message shows the error code and the
recommended way(s) of fixing the error (Fig. 2c1). For example,
when a new module node is just created by the developer, there is
no edge connecting it to other nodes. In this case, the “valid flow-
chart” rule (in Section 4.4) is violated, since this node has indegree
and outdegree zero, meaning it is not used. The error messages

computation node with label “projection” has indegree 0 and compu-
tation node with label “projection” has outdegree 0 displayed in the
console panel remind the developer to resolve this issue. OneLa-
beler continuously validates the workflow as the developer edits it.
The messages are ranked by severity. The low severity errors are
hidden from the console panel until high severity ones are resolved
to avoid overwhelming the developer with many error messages.
The developer can arrive at a feasible solution, i.e., a labeling tool
that works, by iteratively resolving the error messages.

5.2.3 Labeling Tool Preview. To help the developer debug the built
labeling tool, OneLabeler provides a real-time preview of the built
tool. As the developer finishes the workflow, the developer can try
out the preview to examine if it meets the requirement. During the
process, the developer can inspect the state values (e.g., Fig. 2d1) of
the labeling tool through the variable inspector (Fig. 2D). OneLa-
beler also enables the developer to manipulate the control flow
of the preview for debugging. Specifically, the developer can con-
duct single-step debugging for a node or force the control flow to
start from a node. The control flow manipulation functions can be
selected in the node’s right-click menu.

5.3 Built-in Modules
OneLabeler provides a collection of built-in implementations for the
conceptual modules. The user can configure the implementations
on demand. Moreover, for interactive labeling modules, the user
can configure three dimensions (i.e., data type, label task type, and
interface design) to derive various combinations.
• For interactive labeling, as it is the most important module in
data labeling, OneLabeler splits it into three design dimensions:
data type, label task type, and interface design. OneLabeler builds
in the following implementations for the three dimensions:
– Data type: image, text, video, audio, point cloud.
– Label task type: single-/multi-label classification, freeform
text annotation, object detection (for image), segmentation (for
image and point cloud), text/temporal span tagging (for text,
audio and video), span relation (for text, audio and video).

– Interface design: single object display (e.g., Fig. 5B1) and grid
matrix with editable layout (e.g., Fig. 6B2).

The three dimensions are identified following the rationale that
the interface for interactive labeling needs to show data object
details (which depends on the data type), provide the interac-
tion for annotating labels (which depends on the label task
type), and layout the data objects following an interface de-
sign. The data types are chosen to cover the data types in the 33
coded papers as well as common data types in machine learning
benchmark datasets as indexed by Papers With Code4, including
image, text, video, audio, point cloud, and sequential data. We
have implemented all these data types except sequential data
as it is concerned in only one paper [40]. Similarly, the built-in
label task types cover all the tasks in the 33 papers except for
video object tracking with one occurrence [31]. The two most
common interface designs (i.e., grid matrix and single object
display) in the 33 papers are already built-in, while others (i.e.,
thumbnail projection, table with metadata, and thread layout)

4https://github.com/paperswithcode
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are excluded for now. Those excluded from the current built-in
can be implemented in the future.

• For data object selection, OneLabeler builds in algorithmic
selection and interactive selection implementations. For the al-
gorithmic selection, OneLabeler provides active learning tech-
niques (including three entropy-based methods [11, 41, 76], least
confidence, and smallest margin), clustering-based techniques
(selection by ranking cluster labels, distance to cluster centroids,
and density estimation). For interactive selection, OneLabeler
provides interactive configurable data projection methods (e.g.,
Fig. 6B1). The projection can be configured to be a scatterplot or
heatmap of a T-SNE/PCA/LDA projection of the feature values,
where the user can select data objects to label.

• Formodel training, OneLabeler currently builds in several clas-
sic supervised/semi-supervised learning algorithms, including
decision tree, support vector machine, logistic regression, re-
stricted Boltzmann machine, and graph-based label propagation.
OneLabeler can be easily extended to support models provided
by libraries that follow the scikit-learn library’s API design.

• For feature extraction, OneLabeler builds in three techniques
for image feature extraction, including a bag of features technique
(handcrafted features describing color, edge, and texture), trun-
cated SVD of raw images (unsupervised), and LDA projection of
raw images (supervised). For text feature extraction, non-negative
matrix factorization of tf-idf is provided.

• For default labeling, OneLabeler builds in model prediction,
where the model can be the ones trained by the model training
module(s) or provided by the developer through a prediction API.
OneLabeler also provides a rule-based default labeling method
for text span labeling based on part-of-speech (POS) tagging.

• For the other three conceptual modules with relatively low fre-
quencies (in Section 4), OneLabeler builds in basic implementa-
tions for the time being. For quality assurance, modules for
interactive labeling can be reused for the annotator to go through
data objects one by one. For stoppage analysis, OneLabeler
builds in a criterion based on the sample rate specifying the rate
of data objects to be labeled by annotators before stopping. For
label ideation, OneLabeler provides an interface widget where
label categories can be dynamically added, and for each label, the
applicable label task type can be specified.

A developer can craft a labeling tool’s workflow in the visual
programming interface from scratch with the modules described
above. Additionally, OneLabeler builds in a collection of predefined
template workflows, covering combinations of built-in data types
and label task types. Specifically, the built-in templates include
image classification, image segmentation, text classification, text
span tagging, video classification, video temporal segmentation,
audio classification, audio temporal segmentation, point cloud clas-
sification, and point cloud segmentation. The built-in templates are
chosen to cover the five built-in data types, each data type with
one coarse label task (i.e., classification) and one fine-grained label
task (e.g., segmentation). A developer can start with a predefined
template and tailor it towards specific needs. For example, a devel-
oper may start from a template workflow shown in Fig. 2a1 and add
nodes to support default labeling and mixed-initiative sampling
and corresponding connections, resulting in a revised workflow

shown in Fig. 2a2. The workflow (Fig. 2a2) and the resulting data
labeling tool (Fig. 2E) is almost the same as the ones detailed in
Section 6.4 except for minor differences in the configuration for
interactive projection and cluster sampling batch size.

5.4 Customization
OneLabeler’s modular architecture supports extensions for mod-
ule implementations and workflow templates (R1). If the built-in
implementations do not meet a developer’s needs, the developer
can provide customized implementations. OneLabeler provides a
command-line interface (CLI) to scaffold customization. Using the
CLI, the developer can choose a type of customization as intro-
duced below, and OneLabeler will create corresponding template
files for the developer to start with (see our code repository at
https://github.com/microsoft/OneLabeler for details on the CLI).

5.4.1 General Purpose Module Customization. To add a customized
module to OneLabeler, a developer needs to fill the data structure
as specified by the API definition in Section 5.1.1. For an algorithm
module, a developer needs to implement the “run” function that
includes the code for running the algorithm and registering the
result through setters (e.g., “setSamples”) when the algorithm re-
turns. For an interface module, a developer needs to implement the
“render” function that includes the code for rendering the module
and registering the result through setters in the callback function
of user interaction events. For a customized algorithm module im-
plemented as an algorithm server, OneLabeler allows the module
to be directly registered in the visual programming interface.

5.4.2 Customization for Interactive Labeling. OneLabeler internally
represents a built-in interactive labeling module with three submod-
ules: data type, label task type, and interface design. Customizing
interactive labeling modules can be done by following the instruc-
tions above for general-purpose customization or by implementing
only a customized submodule. To customize the data type, a devel-
oper needs to provide a display function defining how to display a
single data object of this data type in the interface design. This dis-
play function takes as input the data object’s data structure, together
with the width and height of the display area for it. For example,
to extend OneLabeler to support webpage labeling, a developer
may specify that a data object of the webpage data type should be
displayed with the HTML iframe tag (see details in Section 6.2).
To customize the label task type, a developer needs to provide a
display function defining the interaction widgets (e.g., buttons and
menus). These widgets are appended to the toolbar in the interface
design to support the labeling interactions. For the label task type
that requires altering the visual appearance of the data object (e.g.,
image segmentation requires displaying a segmentation mask), a
developer additionally needs to provide a render function defining
how the created annotation of a data object should be displayed.
To customize the interface design, a developer needs to implement
a display function defining the annotation interface. The display
function of the annotation interface takes the display function of
data type declarations and toolbar and rendering function of label
task type declarations as input.

https://github.com/microsoft/OneLabeler


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhang et al.

Figure 3: A gallery of labeling tools built with OneLabeler using a single workflow (shown in A○) but different configurations
for the interactive labeling module. The configurations differ in data type, label task type, and interface design. The labeling
tools C○D○ E○ all support classification, multi-label classification, and freeform text annotation, while additionally supporting
label task types that are specialized to the corresponding data type (e.g., object detection for image). (A) A minimal data labeling
template that can be used to generate the six labeling tools B○C○D○ E○ F○G○, with some modifications to node configurations for
each labeling tool; (B) An image classification tool; (C) A multi-task image labeling tool (additionally support object detection,
and segmentation); (D) A multi-task text labeling tool (additionally support span tagging, and span relation annotation); (E) A
multi-task video labeling tool (additionally support span tagging); (F) An audio freeform text annotation tool; (G) A point cloud
classification tool.

5.4.3 Template Customization. To extend OneLabeler with a cus-
tomized workflow template, a developer can either provide a Type-
Script/JavaScript file declaring the workflow as an object or an
equivalent JSON file (see Appendix C for an example).

5.5 Workflow Compiler
OneLabeler enables a workflow to be compiled into an installer
of the specified labeling tool through button-clicking in the visual
programming interface. The compilation is conducted by the back-
end of OneLabeler that holds a mirror of OneLabeler’s source code.
Upon receiving the compilation request, the backend hard-codes
the workflow in the request into the source code mirror. Then, the
backend filters out from the mirror the dead-code irrelevant of the
labeling tool declared by the workflow (e.g., the built-in modules of
OneLabeler not used by the labeling tool and the code responsible
for OneLabeler’s workflow editing/compilation). The modified and
filtered version of OneLabeler’s source code is then compiled into
the declared labeling tool’s installer using Electron Packager5. The
installer installs the labeling tool as desktop software.

6 CASE STUDY
OneLabeler builds in various implementations of common mod-
ules in data labeling tools as introduced in Section 5, which can
directly lead to a wide range of data labeling tools with appropriate
configurations. To demonstrate the effectiveness of OneLabeler
in supporting the development of data labeling tools, this section
presents ten sample data labeling tools built with OneLabeler.

5https://github.com/electron/electron-packager

We first introduce a gallery of six basic labeling tools based on
built-in data types and label tasks. Without changing the topology
of a simple workflow template in Fig. 3A, the six example tools can
be directly generated and can reproduce major functionalities of
popular open-source labeling tools that cover various data types
(including image, text, video, audio, and point cloud) and labeling
tasks (such as classification, multi-label classification, freeform text
annotation, segmentation, span tagging, and span relation).

Moreover, following the API of modules as described in Section 4,
developers can also extend the capabilities of OneLabeler by pro-
viding new implementations as plugins. To further demonstrate
the expressiveness and extensibility of OneLabeler, we showcase
four more examples of advanced data labeling and interactive ma-
chine learning applications that integrate additional algorithm and
interface modules, requiring more complicated workflows.

6.1 A Gallery of Basic Labeling Tools
In Fig. 3, we present six examples of basic labeling tools without ma-
chine assistance, based on the same workflow template in Fig. 3A.
With corresponding modifications to the configurations of the in-
teractive labeling module, concerning data type, label task type, and
interface design, we can achieve specific data labeling tools that
target various tasks such as classification (Fig. 3B), segmentation
(Fig. 3C), span tagging (Fig. 3D) in different application domains
including image (Fig. 3B and 3C), text (Fig. 3D), video (Fig. 3E),
audio (Fig. 3F), and point cloud (Fig. 3G). In Fig. 3, we load public
datasets to the created labeling tools, including Imagenette6 (Fig. 3B

6https://www.tensorflow.org/datasets/catalog/imagenette
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and Fig. 3C), IMDb reviews [47] (Fig. 3D), KTH Action [60] (Fig. 3E),
LibriSpeech [54] (Fig. 3F), and ModelNet [74] (Fig. 3G).

The example tools can reproduce the capabilities of some existing
data-labeling systems in public use. For example, the labeling tool
in Fig. 3C supports image classification, multi-label classification,
freeform text annotation, object detection (with polygon or bound-
ing box), and segmentation. These functionalities cover the major
functionalities of LabelImg [44] (for object detection with bounding
box) and LabelMe [59] (for object detection with polygon).

Similarly, using the text labeling tool in Fig. 3D, major features
of Doccano [50] can be reproduced. Doccano supports labeling of
image classification and multiple text-related label tasks, includ-
ing named entity recognition, sentiment analysis, translation, and
text to SQL. With the text labeling tool in Fig. 3D, named entity
recognition can be done by span tagging, sentiment analysis can be
done by classification, while translation and text to SQL can both
be done by freeform text labeling.

6.2 Customizing a Webpage Data Type
OneLabeler can be extended with customized data types. A cus-
tomized data type can be implemented as a submodule of the in-
teractive labeling module (Section 5.4). Customizing a data type
requires specifying how a single data object should be displayed.
For example, to add a new “webpage” data type, one can supply
the following JavaScript code (by putting the code file in the data
type folder of OneLabeler system). The API design of data type
declaration is compatible with Vue.js7, a popular front-end devel-
opment framework, enabling developers to utilize their previous
programming experience to develop OneLabeler’s plugins.

1 /** The declaration of webpage data type. */

2 export default {

3 /** The label of the data type to appear in the menu. */

4 label: 'webpage',

5 /** Inputs to the display function. */

6 props: ['dataObject', 'width', 'height'],

7 /** Render a webpage using HTML iframe element. */

8 render: (h, { props }) => (

9 h('iframe', {

10 attrs: {

11 width: props.width,

12 height: props.height,

13 src: props.dataObject.src,

14 },

15 })

16 ),

17 }

With the corresponding data type declaration, OneLabeler can
support a new data type with tasks independent of data types,
such as classification, multi-label classification, and freeform-text
annotation. For example, using the webpage data type, we can build
a basic webpage classification tool as shown in Fig 4. This tool
origins from the same workflow as Fig. 3A except that the data type
is set to the newly customized webpage data type.

Developers can further develop data-type-specific label tasks
with additional code. For example, span tagging is originally tar-
geted at text, video, and audio data types. By specifying how to

7https://vuejs.org/guide/extras/render-function.html

Figure 4: A classification tool for the customized webpage
data type.

select a text “span” in HTML text nodes inside a webpage, the
developer can make span tagging applicable to webpages.

6.3 Machine-Aided Multi-Task Text Labeling

Figure 5: Building a machine-aided multi-task text labeling
tool: (A) User-configured workflow for the tool. The interface
of generated multi-task text labeling tool: (B1) A labeling
panel showing the sentence for the annotator to conduct
interactive labeling; (B2) A list of created named entities; (B3)
A list of created entity relations.

Here we introduce a configured text labeling tool that incorporates
machine assistance. This tool is motivated by a data labeling sce-
nario concerned in Cui et al. [20]’s supervised technique that learns
from a human-annotated text dataset. The data objects are quanti-
tative statements. The label tasks require annotating the statement
type (i.e., document classification), the subject and value words in
each sentence (i.e., span tagging), and the correspondence between
subject and value words (i.e., span relation detection). In this usage
scenario, the three types of text labels described above are required
to be assigned to sentences of quantitative statements. Therefore,
we demonstrate the creation of a tool that enables annotators to
provide three types of labels: document classification, span tagging,
and span relation detection.
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In this application, the concerned data objects are text (i.e.,
strings), and the label tasks are to (1) assign one of four class cate-
gories (“proportion”, “quantity”, “change”, and “rank”) to the text
to mark what type of statement it belongs to, (2) extract named
entities from text and associate with one of two class categories
(“subject” and “value”), and (3) link pairs of named entities if they
are related subject and value.

Semi-automatic labeling [2, 29, 85] is a common technique in
the literature for efficient annotation. To incorporate this idea in
the labeling tool, we can start from the simple labeling workflow
template as shown in Fig. 3A, add a default labeling module, and
configure it to be implemented with the built-in POS tagger. Specif-
ically, the developer may decide to use a predictive model to detect
tentative text spans that belong to the subject and value words.
In this way, the annotator may save many efforts when the pre-
dictive model is accurate, as the annotator only needs to delete
false positive detections and create the missing false negative spans.
This functionality can be achieved with a POS tagger built inside
OneLabeler that automatically detect numeric values. Moreover,
if the developer is not satisfied with the built-in POS tagger, the
developer can also implement a customized default labeling module.
Appendix D shows the needed code for the developer to customize a
default labeling module for text span detection with a noun detector
based on POS tagging.

Fig. 5A shows the visually programmed workflow for this label-
ing tool. The resulting workflow of the generated labeling tool starts
from a random sampling of data objects (Data Object Selection).
To save the efforts of annotating text spans, a machine-learned
POS tagger is applied to extract phrases denoting values from the
sentence (Default Labeling). Within a labeling panel that displays
a single sentence, the user can edit its class category (Fig. 5B1), use
brush to create named entities (Fig. 5B2), and link entities to create
entity relation annotation (Fig. 5B3) (Interactive Labeling).

6.4 Mixed-Initiative Image Classification

Figure 6: Building amixed-initiative image classification tool:
(A) User-configured workflow for the tool. The interface of
generated image classification tool: (B1) A projection of data
object features allowing annotators to use lasso selection for
data object selection; (B2) A labeling panel showing images
for an annotator to conduct interactive labeling.

Image classification is a common data labeling application sce-
nario. We demonstrate that OneLabeler allows fast prototyping of

an image classification tool that features mixed-initiative sampling
(with clustering and interactive projection) and default labeling
(with decision tree).

To support efficient annotation, aside from semi-automatic label-
ing mentioned above, cluster-based labeling (e.g., [19, 65]) is also a
common technique that involves algorithm and interface design.
In the labeling tool, the developer may decide to incorporate these
two ideas by integrating: (1) default labeling so that annotators
only need to do correction (i.e., semi-automatic labeling), and (2)
mixed-initiative sampling for selecting similar data objects so that
multiple data objects sharing the same label may be selected to-
gether, allowing one label to be assigned to them simultaneously.
The mixed-initiative sampling may be accomplished by joining
a data object selection module implemented with a clustering al-
gorithm and a projection view that enables annotators to initiate
cluster selection [5, 43].

To build a labeling tool that incorporates these two ideas, the de-
veloper may first start from the simple labeling workflow template
shown in Fig. 3A. The developer can further edit the workflow and
leverage OneLabeler’s built-in interface and algorithm modules for
data object selection and default labeling.

To support default labeling, the developer adds a default labeling
module and uses model prediction as its implementation. To facil-
itate model prediction, a model training module is needed where
the developer may choose a decision tree as the trained model. Ad-
ditionally, feature extraction is required as a decision tree is not an
end-to-endmodel, and the developer may choose SVD as the feature
extraction implementation. To support mixed-initiative sampling,
the developer may first add a data object selection module and
choose clustering by k-means as an algorithmic implementation
for it so that data objects are sampled cluster by cluster, potentially
grouping similar data objects. To allow annotators to involve in
the selection process, the developer can add another data object
selection module implemented with interactive projection.

Fig. 6A shows the finalized visually programmed workflow of
this labeling tool and the resulting labeling tool with the UCI hand-
written digits dataset [23] loaded. In this application, the concerned
data objects are images of handwritten digits, and the task is to
assign digit labels (0, 1, ..., 9) to the images.

The resulting workflow of the generated labeling tool starts
from singular value decomposition (SVD) as the feature extrac-
tion method for processing images (Feature Extraction). Mixed-
initiative sampling is accomplished by sampling data objects by
clustering and then allowing the annotator to revise the samples if
needed (Data Object Selection). Specifically, a clustering with k-
means is run to group and sort data objects where a batch of 16 data
objects is sampled each time. The interface displays a projection
of the data objects, allowing the annotator to use lasso selection
to manually sample data objects (Fig. 6B1). A decision tree is used
to assign default labels for the sampled data objects by machine
and annotator (Default Labeling). Within a labeling panel with
grid matrix layout, the user can edit the labels of sampled data
objects (Fig. 6B2) (Interactive Labeling). Each time the user con-
firms the current samples are correctly labeled, the interim decision
tree model is updated to make the default labeling more accurate
(Model Training).
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6.5 Interactive Machine Learning for Chart
Image Reverse Engineering

Figure 7: Building an interactivemachine learning system for
visualization reconstruction: (A) User-configured workflow
for the system. The interface of the generated system for visu-
alization reconstruction: (B1) An overview image that allows
the annotator to conduct interactive labeling and overview
the visualization reconstruction result; (B2) A labeling panel
showing the geometric objects for the annotator to conduct
interactive labeling.

Apart from enhancing conventional labeling processes with algo-
rithm and interface modules, OneLabeler can also support fast pro-
totyping of interactive machine learning systems with customized
interactive labeling interfaces. We take the system for visualization
reconstruction proposed by Zhang et al. [85] as an example. Their
system aims to extract the dataset generating visualizations, and
involves reverse engineering chart images by machine-aided classi-
fication of geometric objects. We demonstrate the reproduction of
the system by OneLabeler.

Following the workflow figure in their paper, we construct a data
labeling workflow to reproduce the system. In this application, the
concerned data objects are geometric objects (e.g., polygons), and
the task is to assign boolean labels (true detection, false detection)
to the objects. The geometric object is not a common data type,
and OneLabeler has not built-in support for it. Thus, the developer
needs to implement a customized data-type plugin that specifies
the import handler and display handler for geometric object in-
stances. In the import handler, the image processing algorithm
code by Zhang et al. [85] is evoked for extracting geometric objects
from images. In the display handler, we write a simple script for
displaying polygons.

Active learning selects informative data objects according to
label entropy-based criteria. The label entropy is computed from
label distribution estimated by a label propagation model (Data
Object Selection). A decision tree is used to assign default labels
(Default Labeling). The user can label geometric objects in the
grid matrix panel (Fig. 7B2) or in the overview image (Fig. 7B1).
The overview image with extracted polygons embedded is provided
to OneLabeler as a plugin for interactive labeling (Interactive
Labeling). In the model update phase, the label propagation model
used for entropy computation and the decision tree model used for
default labeling are both updated (Model Training).

Fig. 7 shows the visually programmed workflow for this system
and the interface of the resulting system reproduced with similar
features as in the literature. The reproduced systemmimics not only
the interface design of the original system (an overview plus an
annotation panel) but also major algorithm modules for machine-
aided labeling (e.g., active learning, algorithmic default labeling).
OneLabeler has the potential to accelerate the research on inter-
active machine learning by allowing researchers to build research
prototypes more efficiently. The customization required writing in
total around 200 lines of TypeScript code for plugins (excluding the
image processing code provided in the literature [85]). Specifically,
around 50 lines of code are needed to implement the data type
plugin to support polygon as a customized data type. Around 150
lines of code are needed to implement the overview image that
embeds the extracted polygons. In contrast, the front-end of the
original system [85] contains around ten thousand lines of code.

7 USER STUDY
We have conducted an in-lab user study to evaluate the usability of
OneLabeler for prospective developers of data labeling tools.

7.1 Experimental Design
Participants: We recruited eight participants with programming
experience between 9 to 12 years and different levels of experience
in data labeling. Five of them (P1, P2, P3, P6, P8) had developed
data labeling tools. One (P4) had an ongoing research project that
required developing labeling tools. The other two (P5, P7) had
participated in labeling tool design and conducted labeling tasks as
annotators. The programming expertise of the participants varies.
All of them could write back-end or algorithm code using Python or
C♯. Three (P1, P2, P8) also had experience in front-end development
using JavaScript.
Procedure: The study lasted around two hours for each participant.
In each session, we started from asking about the participant’s
experience on programming and data labeling (∼ 15 minutes); next,
we gave training on the OneLabeler system (∼ 30 minutes); then
we asked the participant to build labeling tools using OneLabeler
(∼ 50 minutes); and finally, we collected feedback on OneLabeler
usage experience (∼ 15 minutes).

In training, we showed a documentationwebsite onOneLabeler’s
usage. The documentation introduces basic concepts in OneLabeler
and its visual programming functionalities, including workflow
editing interactions, static checking, and the labeling tool preview.

We designed the following four tasks for each participant to
accomplish with OneLabeler:
• Task 1: Build an image segmentation tool similar to that shown
in Fig. 3C without using any built-in template.

• Task 2: Build an image classification tool similar to Fig. 3B based
on the workflow built for Task 1.

• Task 3: Build a machine-aided image classification tool similar to
Fig. 6A based on the workflow built for Task 2.

• Task 4: Either reproduce the participant’s own labeling tool or
build a webpage classification tool similar to that shown in Fig. 4.
We designed the first three tasks to evaluate the overall OneLa-

beler usability. Specifically, Task 1 evaluates how a user builds new
workflows from scratch, which reflects the understanding of basic



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhang et al.

Table 1: Summary of task completion status and time (in minutes).

Participant Task 1 Time Task 2 Time Task 3 Time Task 4 Time

P1 complete 9 complete 5 complete with hint (state initialization) 13 complete 12
P2 complete 13 complete 4 complete 17 complete 11
P3 complete with hint (parameter) 15 complete with hint (parameter) 4 complete 12 partially complete 14
P4 complete 29 complete 5 complete with hint (linting message) 25 complete 4
P5 complete 16 complete 3 complete 14 partially complete 12
P6 complete with hint (parameter) 15 complete 9 complete with hint (state initialization) 25 partially complete 22
P7 complete 9 complete 5 complete 18 complete 4
P8 complete 8 complete 8 complete 13 complete 11

concepts and usage of OneLabeler. Task 2 evaluates how a user
adapts an existing workflow to a new usage scenario. Task 3 eval-
uates how a user builds complex bespoke workflows. Moreover,
we designed Task 4 to further understand if OneLabeler can be
used to build a custom labeling tool for real-world usage. It is an
open-ended task. A participant could either reproduce a labeling
tool the participant had built before or extend OneLabeler with
custom modules to fulfill the desired labeling scenario. For each
task, we provided the participants a textual specification of the
desired functionality of the labeling tool (see Appendix E).

7.2 Results
7.2.1 Task Completion. Table 1 summarizes task completion status
and time for the four tasks. For the first three tasks (T1, T2, T3), all
the participants were able to complete them. Out of the 24 trials
in total (8 participants × 3 tasks), the participants could finish the
tasks correctly in 18 trials without hints from the experimenter. Four
participants (P1, P3, P4, P6) needed hints in six trials to make their
results exactly the same as the specification given in the instructions.
For Task 4, three of the participants (P4, P6, P7) chose to reproduce
their own labeling tools: both P4 and P7 developed a text labeling
tool similar to Fig. 3D, and P6 built a tool for pairwise comparison
of images. The other five participants selected the alternative to
build a predefined webpage classification tool. Five out of the eight
participants (P1, P2, P4, P7, P8) completed Task 4 independently.
The other three participants (P3, P5, P6) completed Task 4 after
receiving help from the experimenter. The experimenter helped P6
with the coding part as P6’s tool required creating a new data type
for image pairs, while P6 was unfamiliar with web development
skills needed for the customization. P3 and P5 also had no web
development experience. As a result, they could not complete the
coding part when building the webpage classification tool. After the
experimenter helped them develop the required customized module,
they constructed the workflow to achieve the desired labeling tool.

7.2.2 Usability. As new users, all the participants could use OneLa-
beler to accomplish the assigned tasks to build labeling tools within
a short time. This indicates that OneLabeler is easy to learn and easy
to use overall. For most participants, building a new workflow from
scratch (Task 1) took less than 16 minutes, adapting an existing
workflow to a new usage scenario without adding or removing a
node (Task 2) took less than 10 minutes, and adding machine assis-
tance to an existing workflow (Task 3) took around 15 minutes. For
Task 4, which requires coding, participants with web development
experience (P1, P2, P8) accomplished the task independently and
efficiently within 15 minutes. In the interview, all the participants
commented that OneLabeler was flexible and comprehensive.

During the tasks, all the participants had utilized the static check-
ing function to resolve occurred issues, indicating the usefulness
of static checking. During the tasks, participants looked up the
documentation website several times. For example, P1, P2, and
P6 looked up the definition of the conceptual modules, while P5
and P7 looked up the detailed illustration for the error code “no-
uninitialized-inputs” (the Input Initialized rule in Section 4.4). It
indicates that the documentation website provides helpful informa-
tion and that OneLabeler requires some learning.

7.2.3 Potential Improvements. Through the user study, we have
identified several opportunities to improve OneLabeler’s usability.
The completion time of the tasks was affected by misoperations.
The fastest participant (P8) spent only 8 minutes on Task 1, while P4
spent 29 minutes on the same task. The reason for P4’s lengthened
completion time in Task 1 was that P4 clicked the browser’s Refresh
button by mistake, which caused the previous progress to be lost,
and thus P4 had to rebuild the workflow. Similarly, P6 refreshed
the webpage and spent 25 minutes on Task 3. This indicates a
potential usability improvement by supporting automatic saving of
user progress. Additionally, P1 suggested that OneLabeler should
provide a function of refining the workflow layout with one click
to save developer’s efforts in manually arranging nodes.

In the first three tasks, some participants needed hints from
the experimenter to make their workflows consistent with the
specification. Three of the hints (in Task 1 for P3, Task 1 for P6,
Task 2 for P3) were given due to wrong parameter choices in their
workflows. For example, the initial workflows created by both P3
and P6 in Task 1 used the default value 48 for the number of data
objects sampled by random sampling instead of setting it to 1 as
required in the textual specification of the task. Thesemistakes were
caused by carelessness as they forgot to change the configuration
from the default value. In real-world usages, these mistakes caused
by carelessness may be less common, as the specifications for real-
world usages are driven by the developer’s own needs, and such
mistakes would be easy for the developer to spot. Nevertheless,
it may be beneficial to reduce such mistakes via improving the
documentation to stress the necessity to try out the labeling tool
preview and carefully check if it functions as expected.

The other three hints (in Task 3 for P1, P4, P6) were given as
the participants did not recognize that the “model” state needs to
be initialized before use. In this case, OneLabeler’s static checking
provided multiple recommended fixes, as “model” can be initialized
either by declaring it as an output of the initialization node (de-
scribed in Section 5.2.1) or by adding a module that outputs model.
The participants either took a wrong path to fix it by adding unnec-
essary modules, deviating from the specification (P4), or recognized
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that they needed to initialize the state, but did not realize that the
initialization could be done in the initialization node and got stuck
(P1 and P6). This suggests further improvements to provide more
understandable error messages to help developers locate and fix
errors more effectively.

7.2.4 Future Usage Scenarios. According to the participants, exist-
ing data labeling tools usually are not suitable for their own tasks,
mainly due to the following three reasons:
(1) Unconventional labeling tasks: For example, P1 needed to

annotate visual objects with their attributes in visualizations
stored as vector and bitmap images. There exist no mature
labeling tools for this labeling task.

(2) Requirement of algorithm support: To save annotation
costs, a labeling tool may integrate algorithm support. The
suitable algorithm largely depends on the usage scenario. For
example, P3 developed an auto-tracking function to infer bound-
ing boxes of data objects given the bounding box annotations
of previous frames. While P3 found an existing labeling tool
that provides basic auto-tracking support, P3 could not adapt it
to meet the requirement, because it was closed source.

(3) More control over software changes: The data labeling re-
quirements can change over time. For example, P2 said “Even
if there exists a piece of software that temporarily meets my re-
quirements, I would be diffident when using it. I may need to
abandon it at some point when the requirements can no longer be
accommodated by the existing software.”
All the participants agreed that OneLabeler could fill these gaps

with its build-in features and customization support that enable
efficient building and low-level control on the implementation.

8 DISCUSSION
OneLabeler is an attempt to improve the efficiency of building data
labeling tools. The design of OneLabeler follows the rationale that
accelerating the building requires promoting reuse of software mod-
ules, which in turn requires identifying commonalities in existing
data labeling tools. Following this rationale, OneLabeler builds on
a system architecture based on common data labeling modules in
the literature.

On the expressiveness of conceptual modules: Although
there is no guarantee that the primitive modules (i.e., the API def-
initions) in OneLabeler are capable of representing all possible
variations in data labeling tools, there is evidence that they are
expressive enough to cover a wide range of interesting variations.
Firstly, the coding process that leads to the modules provides evi-
dence that the modules are expressive enough, as they conceptually
can represent at least the labeling-related modules in the 33 related
papers. Moreover, the case study provides additional evidence that
OneLabeler can generate diverse labeling tools in action.

Build in more module implementations: A clear direction
to enhance OneLabeler is to extend it with more built-in modules.
We aim to provide more built-in options for the lower frequency
modules currently underexplored (e.g., quality assurance, stoppage
analysis, and label ideation). Especially, while quality assurance is
not frequently mentioned in the papers we collected, we expect it
is important in real-world applications. Additionally, while the con-
ceptual modules of OneLabeler are sufficient to produce diverse data

labeling tools, they may not capture all common techniques related
to data labeling emerging in all the related fields. Meanwhile, the
coding process presented in Section 4 may be reapplied to a larger
corpus of literature to improve the coverage of conceptual modules.
Through this iterative process of extending the expressive power,
we move gradually towards the ultimate goal of making OneLabeler
feature complete, with various built-in implementations (algorithms
or interfaces) available for multifarious real-world usages.

On orthogonality of conceptual modules: While OneLabeler
builds on primitive modules, the conceptual modules in the pro-
posed framework are not strictly orthogonal. For example, both the
quality assurance module and the interactive labeling module out-
put labels. OneLabeler does not and should not forbid developers
to use an implementation of quality assurance for the interactive
labeling purpose. We believe that enforcing strict orthogonality in
the API definitions is unnecessary. For example, if the interactive
labeling module and the quality assurance module were merged
into a single module for strict orthogonality, the discoverability
of interactive labeling implementations and quality assurance im-
plementations would both decrease. A developer who wants to
configure the module into an implementation of interactive label-
ing would have to pick the implementation out of all the interactive
labeling implementations and quality assurance implementations,
which is cumbersome.

On discoverability ofmodules: As the number of built-in mod-
ule implementations increases, the options provided by OneLabeler
may become too many for novice users to discover. We address
this potential issue by allowing new implementations plugged into
OneLabeler and built-in modules deleted from OneLabeler, as each
module implementation in OneLabeler’s source code is an indi-
vidual script file. In this way, we can provide multiple versions
of customized distributions of OneLabeler, each with a different
set of built-in modules suited for different developers. In addition,
OneLabeler can provide advanced search and recommendation
functionalities in the module configuration panel to alleviate this
issue in the future.

Extension to crowd labeling scenarios: In this work, we have
not explicitly considered the usage scenario of crowd labeling work-
flows. Our framework may accommodate some aspects of crowd
labeling workflows, e.g., the task scheme design in crowdsourc-
ing [42] is related to the task design in interactive labeling and post-
processing of crowdsourced labels is related to quality assurance.
However, others are not captured by the conceptual framework. To
support crowdsourcing, OneLabeler needs to build in additional
interface and algorithm modules, such as for administrator’s tasks,
including monitoring label progress, assessing annotators’ relia-
bility, and data management. OneLabeler’s states also need to be
extended to accommodate new modules’ inputs and outputs. To
integrate with existing infrastructures, we also need to investi-
gate how to distribute a labeling tool created with OneLabeler on
crowdsourcing platforms.

Exploring other usages of OneLabeler: While OneLabeler is
designed for building labeling tools, as demonstrated in Section 6.5,
we envision that OneLabeler may be extended to support interac-
tive machine learning applications other than data labeling. For
example, OneLabeler may be extended to interactive model training
if additional interface modules are added to OneLabeler to allow end



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhang et al.

users to edit the model. Another example is to apply OneLabeler to
build customized information retrieval systems (e.g., photo man-
agement systems) by adding more modules for data object selection
with information retrieval techniques. Additionally, OneLabeler is
designed for building standalone labeling tools, while it may also
be beneficial to explore building UI widgets for data labeling that
can embed on other systems.

On Customization: Customization support is essential to en-
sure the flexibility of OneLabeler, as revealed by Task 4 in the user
study. OneLabeler allows a developer to add customized implemen-
tations, as long as the inputs and outputs of the implementations
are within OneLabeler supported states. Meanwhile, the customiz-
ability of OneLabeler may be extended in future work to support
customization on workflow execution and UI appearance. Fine con-
trol on parallelizing execution of multiple modules, such as waiting
for all or racing, cannot be achieved at the moment. Besides, each
interface module currently appears as a window in OneLabeler’s
interface, and UI widgets outside a window are not customizable.
As customization requires textual programming, OneLabeler pro-
vides CLI (Section 5.4) to assist customization development, where a
developer can start coding based on template code rather than from
scratch. To further reduce textual programming efforts required for
customization, it is beneficial to build a marketplace for OneLabeler
modules, where developers can share their customized modules for
others to reuse. It may also be beneficial to further decompose com-
mon modules into submodules. Through subdivision, the flexibility
for reuse increases, as a developer may customize a submodule
instead of an entire module.

9 CONCLUSION
In this paper, we have proposed a conceptual framework for data
labeling and the OneLabeler system based on the conceptual frame-
work to support easy building of labeling tools for different usage
scenarios. To build the framework, we have identified common
states and modules by coding the literature and summarized con-
straints in composing the modules to build labeling tools. Each
modular process can be instantiated as a human, machine, or mixed
computation procedure. OneLabeler provides a visual program-
ming interface that uses modules in the conceptual framework
as building blocks. It builds in various implementations for reuse
so that developers can create labeling tools with no code or less
code. It provides static checking and preview functionalities to
assist development and debugging. OneLabeler supports customiza-
tion, allowing developers to extend its capability further. We have
demonstrated OneLabeler’s expressiveness through a case study of
building ten labeling tools. We have further conducted a user study
to evaluate its usability and collect feedback from potential users.
The user-study results suggest that OneLabeler is easy to learn and
enables potential users to build labeling tools efficiently.
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A CODING DETAILS
In the coding process, we first extract phrases from the flowchart
figures. Each phrase forms a preliminary code. The preliminary
codes are first categorized into states and modules. Then, we catego-
rize preliminary codes into themes. Finally, we filter out irrelevant
themes and merge related themes into the final codes. In the follow-
ing, we introduce details of the coding process, including the themes
we excluded, the occurrences of final codes in the 36 flowcharts we
have coded, and an example of coding a recent labeling tool.

A.1 Themes
State themes: The 163 preliminary state codes are grouped into 10
themes. 5 of the themes are directly included in the final codes as
described in Section 4, including Data Objects, Labels, Samples,
Model, and Features. The other 5 themes we identified are (marked
with frequency):
• Labeled data: the dataset together with (partial) labels (22/163).
• Search related: the states related to searching (7/163).
• Knowledge: the states related to annotators’ knowledge (4/163).
• Data source: the source where data objects are extracted (2/163).
• Others: the other states not fitting previous themes (9/163).

The theme “labeled data” maps to two final codes “data objects”
and “labels” as “labeled data” covers both aspects. There are 2 cases
where we group one preliminary code into two themes, where the
preliminary code contains the word “with” (e.g., “selected subsets
with default labels” in Zhang et al. [85]’s Figure 3).
Modules themes: The 188 preliminary are grouped into 16 themes.
7 of the themes are directly included in the final codes as described
in Section 4, including data object selection,model training, fea-
ture extraction, default labeling, quality assurance, stoppage
analysis, and label ideation. The other 9 themes we identified are
(marked with frequency):
• User labeling: the process where annotators create/edit data
labels (33/188).

• Labeling interface: the process to present data (possibly with
labels) to annotators for creating/editing labels (17/188).

• Preprocessing: the application-specific process to precompute
auxiliary data structures used in the data labeling tool (11/188).

• Model understanding: the process to understand the prediction
criteria or quality of the model (5/188).

• Data exploration: the process to browse the dataset for the
purpose of familiarizing with the dataset (4/188).

• Postprocessing: the process to postprocess data labeling results
(i.e., labels) for application-specific needs (4/188).

• Data collection: the process to collect data or enlarge the dataset
(4/188).

• User modeling: the process to model user and interpret user
intent (2/188).

• Others: the other processes not fitting previous themes (13/188).
The themes “user labeling” and “labeling interface” are merged

into the final code “interactive labeling” as the former theme is
related to user interaction in interactive labeling, and the latter is
related to the interface supporting interactive labeling. For module
coding, there are 8 edge cases where we group one preliminary
code into multiple themes. It happens typically when the phrase
contains the word “and”, such as “sampling and annotation” in Liao

et al. [43]’s Figure 1. For the preliminary codes for both states and
modules, we categorize them into “others” when the preliminary
code is hard to categorize, typically when the code is too verbose
(e.g., “adding to labeled dataset” in Zhang et al. [85]’s Figure 3)
and when the code is too application-specific (e.g., “superpixels” in
Zhang et al. [82]’s Figure 2).

A.2 State and Module Occurrences

Table 2: Occurrences of states in the literature. The final codes
are abbreviated by initials (e.g., “DO” refers to “data objects”).
Slash (/) is used in final codes when the flowchart contains
no states or the flowchart’s states are excluded in the coding
procedure.

ID Paper Venue Year Figure Index Final Codes

1 Fails2003Interactive [27] IUI 2003 2 /
2 Hoi2005Semi [32] CVPR 2005 1 DO, L, S
3 Tian2007Face [66] CVPR 2007 1 DO, L, S, F
4 Cui2007EasyAlbum [19] CHI 2007 13 DO, L, F
5 Hua2008Online [33] MM 2008 2 DO
6 Rooij2010MediaTable [21] CG&A 2010 3 DO, L, S
7 Wang2011Active [73] TIST 2011 3 DO, L, M
8 Wang2011Active [73] TIST 2011 5 DO, L, M
9 Wang2011Active [73] TIST 2011 7 DO
10 Hoeferlin2012Inter [31] VAST 2012 1(b) DO, L, M
11 Tang2013Towards [65] TOMM 2013 2 DO, L, S
12 Zahalka2014Towards [80] VAST 2014 9 DO, L, M, F
13 Bryan2014ISSE [13] CHI 2014 5 DO
14 Paiva2015Approach [53] TVCG 2015 1 DO
15 Russakovsky2015Best [58] CVPR 2015 2 L, S
16 Liao2016Visualization [43] TMM 2016 1 DO, L, F
17 Ye2016Face [78] MM 2016 1 DO, L, S
18 Kucher2017Active [36] TIIS 2017 1 DO, L, M
19 Ratner2017Snorkel [55] VLDB 2017 2 DO, L, M
20 Bernard2018VIAL [6] TVC 2018 1 DO, L, S
21 Bernard2018VIAL [6] TVC 2018 2 DO, L, S
22 Felix2018Exploratory [28] UIST 2018 1 L
23 Zhang2018Collaborative [82] MM 2018 2 DO, L
24 Shang2019Annotating [63] ICMR 2019 2 /
25 Xiang2019Interactive [75] VAST 2019 2 DO, L, S
26 Liu2019Interactive [46] TVCG 2019 3 DO, L
27 Choi2019AILA [18] CHI 2019 6 /
28 Wang2019DeepIGeoS [72] TPAMI 2019 1 DO, L
29 Halter2019VIAN [30] CGF 2019 2 DO, L, S, F
30 Evensen2020Ruler [25] EMNLP 2020 2 DO, S, M
31 Baeuerle2020Classifier [4] CGF 2020 1 DO, L
32 Lekschas2020Peax [40] CGF 2020 3 DO, L
33 Oelen2021Crowdsourcing [52] IUI 2021 2 DO, L, M
34 Rietz2021Cody [57] CHI 2021 4 DO, L, M
35 Zhang2021ChartNavigator [83] TKDE 2021 1 DO, F
36 Zhang2021MI3 [85] TIIS 2021 3 DO, L, S, M

Table 2 summarizes the occurrences of final codes for states in
the 36 flowchart figures. In the table, for each flowchart figure, if the
flowchart contains at least one phrase that corresponds to a specific
final code, we add the final code to the “Final Codes” column. When
a flowchart figure contains no phrases that refer to inputs/outputs,
or that the phrases that refer to inputs/outputs are excluded in the
processing of generating final codes from the themes, we mark the
figure’s “Final Codes” empty, represented by a slash (/). Similarly,
Table 3 summarizes the occurrences of final codes for modules in
the 36 flowchart figures.

A.3 A Coding Example
AILA [18] supports labeling document classification. Figure 6 in its
paper is a flowchart. The figure contains nested blocks, and we use
a hyphen to denote the nesting relation in the preliminary code. For
example, “preprocessing - stemming” refers to a block named “stem-
ming” placed in a block named “preprocessing”. We decompose the
nested blocks to the lowest level instead of treating the root block,
such as “preprocessing”, as a single phrase because different nested
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Table 3: Occurrences of modules in the literature. The final
codes are abbreviated by initials (e.g., “IL” refers to “interac-
tive labeling”).

ID Paper Venue Year Figure Index Final Codes

1 Fails2003Interactive [27] IUI 2003 2 IL, MT, DL
2 Hoi2005Semi [32] CVPR 2005 1 IL, DOS, MT
3 Tian2007Face [66] CVPR 2007 1 IL, DOS, FE
4 Cui2007EasyAlbum [19] CHI 2007 13 IL, DOS, FE
5 Hua2008Online [33] MM 2008 2 DOS
6 Rooij2010MediaTable [21] CG&A 2010 3 IL, DOS, LI
7 Wang2011Active [73] TIST 2011 3 IL, DOS, MT
8 Wang2011Active [73] TIST 2011 5 IL, DOS, MT
9 Wang2011Active [73] TIST 2011 7 IL, DOS, MT, QA
10 Hoeferlin2012Inter [31] VAST 2012 1(b) IL, DOS, MT
11 Tang2013Towards [65] TOMM 2013 2 IL, DOS, SA
12 Zahalka2014Towards [80] VAST 2014 9 IL, MT, FE, LI
13 Bryan2014ISSE [13] CHI 2014 5 IL, MT
14 Paiva2015Approach [53] TVCG 2015 1 IL, DOS, MT, FE, DL
15 Russakovsky2015Best [58] CVPR 2015 2 IL, DOS, DL
16 Liao2016Visualization [43] TMM 2016 1 IL, DOS, MT
17 Ye2016Face [78] MM 2016 1 MT
18 Kucher2017Active [36] TIIS 2017 1 IL
19 Ratner2017Snorkel [55] VLDB 2017 2 MT
20 Bernard2018VIAL [6] TVC 2018 1 IL, DOS, FE, DL, SA
21 Bernard2018VIAL [6] TVC 2018 2 IL, DOS, MT, FE, DL
22 Felix2018Exploratory [28] UIST 2018 1 IL, QA, LI
23 Zhang2018Collaborative [82] MM 2018 2 IL, DL
24 Shang2019Annotating [63] ICMR 2019 2 IL
25 Xiang2019Interactive [75] VAST 2019 2 IL, DOS, DL
26 Liu2019Interactive [46] TVCG 2019 3 IL, DOS, FE, DL, QA
27 Choi2019AILA [18] CHI 2019 6 IL, DOS, FE
28 Wang2019DeepIGeoS [72] TPAMI 2019 1 IL, DL, SA
29 Halter2019VIAN [30] CGF 2019 2 IL, FE, DL
30 Evensen2020Ruler [25] EMNLP 2020 2 IL, DOS, MT
31 Baeuerle2020Classifier [4] CGF 2020 1 MT, DL, QA
32 Lekschas2020Peax [40] CGF 2020 3 IL, DOS
33 Oelen2021Crowdsourcing [52] IUI 2021 2 IL, DOS, DL
34 Rietz2021Cody [57] CHI 2021 4 IL, MT, DL
35 Zhang2021ChartNavigator [83] TKDE 2021 1 DOS, FE
36 Zhang2021MI3 [85] TIIS 2021 3 IL, DOS, MT, FE, DL, QA, SA

Table 4: Coding the flowchart in AILA [18]. The final codes
are abbreviated by initials. A slash (/) in the final code refers
to the case that the theme is excluded from the final code.

Preliminary Code Theme Final Code

preprocessing - stemming feature extraction FE
preprocessing - bag of words feature extraction FE
preprocessing - term-document matrix feature extraction FE
preprocessing - word vector feature extraction FE
preprocessing - sentence vector feature extraction FE
document analysis - re-ordering - selecting data object selection DOS
document analysis - re-ordering - sorting data object selection DOS
document classifier - interactive attentive module - attention weight preprocessing /
document classifier - interactive attentive module - prediction score preprocessing /
labeling interface - document embedding data object selection DOS
labeling interface - document visualization labeling interface IL

blocks may correspond to different themes. The flowchart contains
11 phases, all categorized as preliminary codes for modules because
they describe actions. The 11 phrases are grouped into themes and
final codes as shown in Table 4. We categorize “attention weight”
and “prediction score” as preprocessing because they prepare the
data visualized in the labeling interface. “Labeling interface - docu-
ment embedding” is categorized as “data object selection” because
it refers to an interactive projection where the annotator can select
data objects to label.

B GRAPH-THEORETIC CONSTRAINTS ON
DATA LABELINGWORKFLOWS

B.1 Notations
• 𝐺 = (𝑉 , 𝐸): a directed graph modeling a data labeling tool.
• 𝑉 : a set of nodes, each corresponding to a software module, or
initialization, decision, and exit node.

• 𝐸: a set of edges specifying the execution order.

• 𝑡𝑦𝑝𝑒 (𝑣): the type of a node 𝑣 , which takes one of the following
values: initialization, process, decision, exit.

• 𝑓 𝑢𝑛(𝑣): the function of a node 𝑣 . When 𝑡𝑦𝑝𝑒 (𝑣) takes value
in { initialization, decision, exit }, 𝑓 𝑢𝑛(𝑣) = 𝑡𝑦𝑝𝑒 (𝑣). When
𝑡𝑦𝑝𝑒 (𝑣) = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑓 𝑢𝑛(𝑣) takes one of the following values:
interactiveLabeling, dataObjectSelection, modelTraining, feature-
Extraction, defaultLabeling, qualityAssurance, stoppageAnalysis,
labelIdeation.

• 𝑖𝑛𝑝𝑢𝑡 (𝑣): the set of input states to a node 𝑣 .
• 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣): the output state of a node 𝑣 .
• 𝐸𝑥𝑒𝑐 (𝐺): the set of all the directed walks on the graph from the
initialization node to the exit node.

B.2 Constraints on the Workflow Graph
Valid Flowchart:
• The graph contains no parallel edges (i.e., 𝐸 is not a multi-set).
• The graph contains one initialization node (denote as 𝑣𝑠 ).

∃!𝑣 (𝑣 ∈ 𝑉 ∧ 𝑡𝑦𝑝𝑒 (𝑣) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)
• The graph contains one exit node (denote as 𝑣𝑒 ).

∃!𝑣 (𝑣 ∈ 𝑉 ∧ 𝑡𝑦𝑝𝑒 (𝑣) = 𝑒𝑥𝑖𝑡)
• A process node has outdegree 1.

∀𝑣 (𝑣 ∈ 𝑉 ∧ 𝑡𝑦𝑝𝑒 (𝑣) = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 → 𝑑𝑒𝑔+ (𝑣) = 1)
• A decision node has outdegree 2.

∀𝑣 (𝑣 ∈ 𝑉 ∧ 𝑡𝑦𝑝𝑒 (𝑣) = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 → 𝑑𝑒𝑔+ (𝑣) = 2)
• An initialization node has indegree 0 and outdegree 1.

∀𝑣 (𝑣 ∈ 𝑉 ∧𝑡𝑦𝑝𝑒 (𝑣) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 → 𝑑𝑒𝑔+ (𝑣) = 1∧𝑑𝑒𝑔− (𝑣) = 0)
• An exit node has outdegree 0.

∀𝑣 (𝑣 ∈ 𝑉 ∧ 𝑡𝑦𝑝𝑒 (𝑣) = 𝑒𝑥𝑖𝑡 → 𝑑𝑒𝑔+ (𝑣) = 0)
• All the nodes can be reached from the initialization node. The
exit node can be reached from all the nodes.

∀𝑣 (𝑣 ∈ 𝑉 → ∃𝑒𝑥𝑒𝑐 (𝑒𝑥𝑒𝑐 ∈ 𝐸𝑥𝑒𝑐 (𝐺) ∧ 𝑒𝑥𝑒𝑐 = (𝑣𝑠 , ..., 𝑣, ..., 𝑣𝑒 )))
• No self loops.

∀𝑣 (𝑣 ∈ 𝑉 → (𝑣, 𝑣) ∉ 𝐸)
Input Initialized:

∀𝑒𝑥𝑒𝑐 = (𝑣𝑠 , ..., 𝑣𝑒 ) ∈ 𝐸𝑥𝑒𝑐 (𝐺)∀𝑣𝑖 ∈ 𝑒𝑥𝑒𝑐∀𝑖𝑛𝑝𝑢𝑡 ∈ 𝑖𝑛𝑝𝑢𝑡 (𝑣𝑖 )
∃ 𝑗 ( 𝑗 < 𝑖 ∧ 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣 𝑗 ) = 𝑖𝑛𝑝𝑢𝑡)

No Redundancy:
• After a module is visited, it should not be revisited until at least
one of its inputs’ value has been changed.

∀𝑒𝑥𝑒𝑐 = (𝑣1, ..., 𝑣𝑘 ) ∈ 𝐸𝑥𝑒𝑐 (𝐺)
((∃1 ≤ 𝑖 < 𝑗 ≤ 𝑘 (𝑣𝑖 = 𝑣 𝑗 )) →

(∃𝑖 < 𝑙 < 𝑗 (𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑙 ) ∈ 𝑖𝑛𝑝𝑢𝑡 (𝑣 𝑗 ))))
• After a module is visited, its output(s) should be used by a module.

∀𝑒𝑥𝑒𝑐 = (𝑣1, ..., 𝑣𝑘 ) ∈ 𝐸𝑥𝑒𝑐 (𝐺)
∀1 ≤ 𝑖 ≤ 𝑘 (𝑜𝑢𝑡𝑝𝑢𝑡 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑖 ) →

(∃𝑖 < 𝑗 ≤ 𝑘 (𝑜𝑢𝑡𝑝𝑢𝑡 ∈ 𝑖𝑛𝑝𝑢𝑡 (𝑣 𝑗 )∧�𝑖 < 𝑙 < 𝑗 (𝑜𝑢𝑡𝑝𝑢𝑡 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑙 )))))
Involve Labeling:

∀𝑒𝑥𝑒𝑐 = (𝑣𝑠 , ..., 𝑣𝑒 ) ∈ 𝐸𝑥𝑒𝑐 (𝐺)∃𝑖 (𝑓 𝑢𝑛(𝑣𝑖 ) = 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑔)
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C CUSTOMIZEDWORKFLOW TEMPLATE
Below is the code snippet to declare a customized workflow tem-
plate for webpage classification.

1 /** The declaration of a minimal webpage classification workflow. */

2 export default {

3 nodes: [

4 {

5 label: 'initialization',

6 type: 'Initialization',

7 value: {

8 dataType: 'Webpage',

9 labelTasks: ['Classification'],

10 },

11 layout: { x: 40, y: 40 },

12 },

13 {

14 label: 'random sampling',

15 type: 'DataObjectSelection',

16 value: ['Random', { params: { nBatch: { value: 2 } } }],

17 layout: { x: 160, y: 40 },

18 },

19 {

20 label: 'grid matrix',

21 type: 'InteractiveLabeling',

22 value: ['GridMatrix', {

23 params: {

24 nRows: { value: 1 },

25 nColumns: { value: 2 },

26 }

27 }],

28 layout: { x: 280, y: 40 },

29 },

30 {

31 label: 'check all labeled',

32 type: 'StoppageAnalysis',

33 value: 'AllLabeled',

34 layout: { x: 400, y: 40 },

35 },

36 {

37 label: 'stop?',

38 type: 'Decision',

39 layout: { x: 400, y: 130 },

40 },

41 {

42 label: 'exit',

43 type: 'Exit',

44 layout: { x: 410, y: 220 },

45 },

46 ],

47 edges: [

48 { source: 'initialization', target: 'random sampling' },

49 { source: 'random sampling', target: 'grid matrix' },

50 { source: 'grid matrix', target: 'check all labeled' },

51 { source: 'check all labeled', target: 'stop?' },

52 { source: 'stop?', target: 'exit', condition: true },

53 { source: 'stop?', target: 'random sampling', condition: false },

54 ],

55 }

D CUSTOMIZED ALGORITHMMODULE
Below is the code snippet to declare a customized default labeling
module for span annotation by detecting nouns. The module is
implemented in the form of an algorithm server.

1 # A customized default labeling module

2 # for span annotation by detecting nouns.

3 import json
4 import nltk

5 import tornado.httpserver

6 import tornado.ioloop

7 import tornado.options

8 import tornado.web

9 import uuid

10 from typing import List

11

12 # Core function

13 def predict(data_object: dict) -> List[dict]:
14 """ Create default spans by detecting nouns. """

15 sentence = data_object['content']

16 pos_tag = nltk.pos_tag(sentence.split())

17 start = 0

18 end = 0

19 spans = []

20 for i, (segment, tag) in enumerate(pos_tag):
21 start = end + 1 if i != 0 else end

22 end = start + len(segment)
23 # filter tags that are not nouns

24 if tag not in ['NN', 'NNP', 'NNS']:

25 continue
26 spans.append({

27 'text': segment,

28 'start': start,

29 'end': end,

30 'category': 'subject',

31 'uuid': str(uuid.uuid4()),
32 })

33 return spans

34

35 class DefaultLabelingHandler(tornado.web.RequestHandler):

36 def post(self):

37 self.set_header('Access-Control-Allow-Origin', '*')

38 data_objects = json.loads(self.request.body)['dataObjects']

39 labels = [{ 'spans': predict(d) } for d in data_objects]

40 self.write({ 'labels': labels })

41

42 def main():

43 tornado.options.parse_command_line()

44 http_server = tornado.httpserver.HTTPServer(

45 tornado.web.Application(

46 handlers=[(r'/defaultLabels', DefaultLabelingHandler)],

47 debug=True,

48 )

49 )

50 http_server.listen(8007)

51 print('Serve at http://localhost:8007/defaultLabels')

52 tornado.ioloop.IOLoop.instance().start()

53

54 if __name__ == "__main__":

55 main()
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E USER STUDY INSTRUCTIONS
The following are the instructions we gave the participants for the
4 labeling tool development tasks.

E.1 Task 1 (Image Segmentation)
Please create a labeling tool for image segmentation according
to the following specification of the labeling tool’s functionality.
Please do not use OneLabeler’s built-in templates for this task.
Specification:
(1) In the image segmentation tool, data objects are iteratively se-

lected for annotators to label. 1 data object is randomly selected
each time.

(2) The interface displays the 1 data object in a single object display.
(3) After annotating the 1 data object, the system checks whether

all the data objects are labeled.
(4) If all the data objects are labeled, the labeling STOPS.
(5) Otherwise, goto step 1.
Please tell the experimenter when you have finished.

E.2 Task 2 (Image Classification)
Based on the previous image segmentation workflow in Task 1,
please modify the workflow to create another labeling tool for
image classification according to the following specification of the
labeling tool’s functionality.
Specification:
(1) In the image classification tool, data objects are iteratively se-

lected for annotators to label. 16 data objects are randomly
selected each time.

(2) The interface displays the 16 data objects in a grid matrix with
4 rows and 4 columns.

(3) After annotating the 16 data objects, the system checks whether
all the data objects are labeled.

(4) If all the data objects are labeled, the labeling STOPS.
(5) Otherwise, goto step 1.
Please tell the experimenter when you have finished.

E.3 Task 3 (Machine-aided Image Classification)
Based on the previous image classification workflow in Task 2,
please modify the workflow to create another labeling tool for
image classification according to the following specification of the
labeling tool’s functionality.
Specification:
(1) At the beginning, SVD features are extracted for the data objects.
(2) Then, data objects are iteratively selected for annotators to label.

16 data objects are randomly selected each time.
(3) The selected data objects are then assigned default labels by a

decision tree classifier.
(4) The interface displays the 16 data objects in a grid matrix with

4 rows and 4 columns.
(5) After annotating the 16 data objects, the system checks whether

all the data objects are labeled.
(6) If all the data objects are labeled, the labeling STOPS.

(7) Otherwise, the decision tree classifier used for default labeling
is updated by retraining.

(8) Then, goto step 2.
Please tell the experimenter when you have finished.

E.4 Task 4 - Option 1 (Customize Data Type)
Based on the given image classification workflow template, please
modify the workflow to create another labeling tool for webpage
classification according to the following specification of the labeling
tool’s functionality.
Specification:
(1) In the webpage classification tool, data objects are iteratively

selected for annotators to label. 2 data objects are randomly
selected each time.

(2) The interface displays the 2 data objects in a grid matrix with 1
row and 2 columns.

(3) After annotating the 2 data objects, the system checks whether
all the data objects are labeled.

(4) If all the data objects are labeled, the labeling STOPS.
(5) Otherwise, goto step 1.
The webpage data type is not currently supported in OneLabeler.
Before you start to build the labeling tool in the visual programming
interface, you will need to first create the new webpage data type
with some coding. To create this new data type, please follow the
instructions below.
(1) Enter the “./client” folder of OneLabeler’s source code.
(2) Execute “npm run customize” in the command-line, and choose

suitable options in the command-line interface to create tem-
plate code files for the webpage data type.

(3) Revise template code files to create the webpage data type.
The webpage data type should satisfy this specification:

When using a grid matrix to display webpage data objects, each
grid should display the webpage content. Each webpage data object
should fill the grid that contains it.
Additional Tips:
• You may first read the “README.md” file in the created template
code files, which gives you an overview of what the template
code files are.

• When editing the code, youmay refer to theHTML iframe tagAPI
(https://developer.mozilla.org/docs/Web/HTML/Element/iframe)
if you are unfamiliar with it.

• In this task, you will not need to edit any code files other than
the files created by the “npm run customize” command.

• You may refer to the “Customization” section of the documenta-
tion website.

• If you do not have web development experience, you may ask
the experimenter to help you with the programming part.

Please tell the experimenter when you have finished.

E.5 Task 4 - Option 2 (Reproduce Your Tool)
Please use OneLabeler to reproduce your labeling tool. The repro-
duction should have similar major functionalities as your labeling
tool but does not need to be the same. For this task, you may ask
the experimenter for help.
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