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Fig. 1. CohortVA streamlines the iterative cohort analysis workflow and provides visual interpretation for model results. (A) The
Scope Specification Component configures the initial research scope. (B) The Cohort Identification Component visually summarizes
recommended cohort and feature candidates. (C) The Cohort Exploration Component provides multi-faceted visualizations to validate
the selected cohort from multiple perspectives. (D) The Figure Details Component shows the historical figure’s profile.

Abstract— In history research, cohort analysis seeks to identify social structures and figure mobilities by studying the group-based
behavior of historical figures. Prior works mainly employ automatic data mining approaches, lacking effective visual explanation. In
this paper, we present CohortVA, an interactive visual analytic approach that enables historians to incorporate expertise and insight
into the iterative exploration process. The kernel of CohortVA is a novel identification model that generates candidate cohorts and
constructs cohort features by means of pre-built knowledge graphs constructed from large-scale history databases. We propose
a set of coordinated views to illustrate identified cohorts and features coupled with historical events and figure profiles. Two case
studies and interviews with historians demonstrate that CohortVA can greatly enhance the capabilities of cohort identifications, figure
authentications, and hypothesis generation.
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1 INTRODUCTION

Cohort analysis is a crucial research area in history studies known as
prosopography, which can inspire the interpretation of the historical
process. Here, a cohort refers to a group of figures that engage in com-
mon activities or have frequent interactions [39]. A prosopographical
study typically focuses on one cohort and explores its concept, i.e., the
set of supplementary features that describes a cohort (e.g., political
identities, relationship networks, and social structure) [5, 42]. For in-
stance, based on cohort analysis, Beard [1] revealed that the United
States’ founding fathers were closely tied with not only leading the
American revolution together, but also personal financial interests. This
new concept has provoked widespread discussions throughout the U.S.
Federal Constitution from a financial perspective. More importantly, it
has inspired subsequent works to adopt cohort analysis in suggesting
novel concepts and interpretations of well-known cohorts [26, 50].
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Recent advancements in digital humanities have greatly relieved
historians from manual data collection and labeling. One remarkable
progress is that large-scale historical databases, such as China Bio-
graphical DataBase [43] and China Government Employee Database-
Qing [12], have been carefully built and widely used. Leveraging them
in cohort analysis poses new challenges because the data sizes and
varieties overwhelm analysts’ capabilities [45]. Automatic analysis
approaches can alleviate these difficulties yet are far from ideal. First,
existing tools focus partially on extracting and analyzing features, but
merely support correlation analysis in the context of social structure.
For example, Netdraw [7] and Worldmap [23] can only construct basic
features from relation networks and geographic locations. Second,
most tools are inefficient in integrating human intelligence and support-
ing iterative exploration. Third, the lack of interpretability prevents
historians from effectively verifying obtained results. Historians need
additional effort to authenticate results by referring to other documents.

As such, it is highly desirable to integrate domain knowledge and
expert hypothesis into the exploration procedure within an intuitive
visual interface. For that, we closely worked with historians to observe
their behaviors and needs, and identified two challenges: 1) Historians
must devote a significant amount of time to synthesizing and cross-
checking findings of various figures from a large body of historical
literature. It is very time-consuming because figure profiles and features
cover various perspectives, such as native place, gender, and changes
in official positions. 2) The entire process is repetitive because they
may constantly shift the goals. Starting from a familiar targeted group,
they might discover interesting patterns and recursively explore and
study relevant figures. Considering their exploration process and such
obstacles, this is a missed opportunity to provide a visualization-driven
solution for efficient analysis and reasoning.

The kernel of our solution, CohortVA, is a cohort identification
model that can automatically identify cohorts and their figures. Specifi-
cally, given an initial group of interested figures, our model constructs
a knowledge graph of related documentary descriptions. It extracts and
fuses the common features as the cohort’s concept. Based on weakly-
supervised learning, our model identifies new cohorts by proposing
different cohort concepts as recommendations. The recommended co-
horts and their features are visually investigated within the integrated
visual interface from multiple perspectives, e.g., location, time, and
relationship. In particular, historians can study feature details, reason
relations among figures, and progressively refine features and figures of
the targeted cohort. Case studies and expert interviews demonstrate that
CohortVA frees historians from their heavy workloads and improves the
analysis performance. This study makes the following contributions:

• We propose a cohort identification model that utilizes weakly-
supervised learning to free historians from manual annotation,
querying, and cross-checking.

• We develop a visual analytic approach, enabling historians to
study cohorts and concepts interactively.

• We conduct case studies and expert interviews to demonstrate the
effectiveness and usefulness of our approach.

2 RELATED WORK

In this section, we review the relevant works in history-oriented visual
analysis and visual analytics for cohort studies.

2.1 History-Oriented Visual Analysis
Recently, visual analysis has been widely applied to historical data [8].
History-oriented approaches can be categorized as phenomenon-based
and theory-based. A phenomenon refers to a recorded historical event,
while a theory explains why one or more phenomena occurred.

Phenomenon-based research analyzes the phenomena of historical
entities such as figures [28, 53], events [14, 24], and cultures [3, 10, 19].
They focus on a few instances in great detail to find hidden patterns
and correlations for the phenomenon. Zhang et al. [52] contextualized
poems from the Chinese Song dynasty with the poets’ life stories. The
Svoboda Diaries Project [11] uses a person’s diaries to recreate the
personal experience in Ottoman Iraq. However, they fail to provide a
holistic overview for interpreting and generalizing similar phenomena.

Theory-based research deduces coherent explanations from sev-
eral phenomena. To explore the similarities among social structures,
Turchin et al. [42] collected and summarized the characteristics (e.g.,
social scale, economy, and information systems) of 414 societies from
30 regions. Regarding a smaller social unit, GeneaQuilts [4] presents
large family trees in an interactive diagonal matrix to study genealogical
relationships. Similarly, GenealogyVis [33] explores family structure
via correlations between family development and social environment.
These works demonstrate the benefits of analyzing social structure
from a group perspective. Another popular domain investigates the
social mobility aggregated by individual movements. For example,
Bol [5] adopted geospatial analysis to study how the Southern Chinese
intellectual-social movements spread through the 12th century. Khulusi
et al. [30] used network analysis and a novel visualization design to de-
fine groups interactively for musicians’ biography. CareerLens [46] and
ACSeeker [47] utilize time-series analysis to explore career trajectories.

In this work, we mainly follow the theory-based approach to assist
historians in developing the concepts behind cohorts. We mine features
from large-scale multi-dimensional data and fuse them to propose
concept candidates. These concepts characterize the cohort and form
the basis for understanding the phenomena. We also borrow ideas
from phenomenon-based approaches to let users verify the cohorts and
contextualize the concepts with detailed historical events.

2.2 Visual Analytics for Cohort Studies
Cohort studies are widely used across various domains, such as
medicine [38, 55] and biology [9]. For instance, CoCo [35] integrates
statistical and visual analysis for the medical experts to classify and
compare cohorts’ time series. PhenoStacks [21] simplifies ontological
topologies and explores symptom similarities among inter-groups and
intra-groups of patients. However, these works focus on analyzing and
classifying multiple entities into cohorts with existing and clear defi-
nitions. They cannot be directly adopted to historical cohort analysis,
which emphasizes the identification of new and vaguely defined cohorts.
In addition, they cannot iteratively refine the cohort concepts, which
usually only become more evident during the exploratory analysis.

The development of historical databases has contributed significantly
to prosopography [6, 27]. Historians widely adopt data visualization
tools to explore cohort characteristics from digital records. For ex-
ample, Gephi [22], Netdraw [7], and Worldmap [23] leverage basic
visualization, such as force-directed graphs and choropleth maps, to
help historians organize data intuitively. However, these tools fail to
integrate multi-dimensional data and features effectively for cohort anal-
ysis. Historians need to spend much time cross-validating discoveries
about cohorts in the extensive historical literature.

Besides visualization, machine learning techniques have significantly
empowered cohort visual analysis in terms of efficiency [16]. For exam-
ple, Zhao et al. [56] used non-binary hierarchical trees and overlapping
clustering to shortlist important clusters, reducing the cost of manual
selection. However, historians are often confused about the semantic
meaning behind the automatic outputs, i.e., the extracted latent features.
For instance, Franke et al. [20] pointed out that confidence was the
first-class attribute of historians for data adoption. They have thus
raised awareness of improving interpretability for wider tool adoption.

The closest work to ours is PK-clustering [37]. It captures the user’s
prior knowledge as a set of incomplete clusters, then runs multiple
clustering algorithms and visually compares the ensemble results for
the user’s decisions. It enhances interpretability by keeping human-
in-the-loop for each analytical iteration. Although PK-clustering and
CohortVA both rely on users’ interactions with the interim results, there
are still a few key differences compared with our work. First, PK-
clustering performs typical clustering tasks on medium-sized datasets
with 50-500 entities. In contrast, CohortVA identifies a cluster as
one cohort from a large-scale relational database having over 500K
historical figures. We proposed a weakly-supervised learning model
and interlinked views to address the difference in scale. Second, instead
of visualizing the results alone, we provide interpretable features that
corroborate the cohort and auxiliary domain information to explain the
results. These quickly validate the cohort composition.



3 BACKGROUND

In this section, we introduce the domain background information and
outline the requirements obtained through interviewing domain experts.
To characterize domain problems and formulate system requirements,
we have worked closely with five experienced historians over the past
two years. Three of them (H1-H3) are in charge of the China Bio-
graphical DataBase (CBDB) [43]. H1 and H2 are committee members,
and H3 is a professor leading cohort analysis research projects based
on CBDB. The other two (H4 and H5) are Ph.D. students who use
CBDB to study the mobility of historical cohorts and the history of the
Chinese Song dynasty, respectively. Our collaboration consists of five
phases: data acquisition (Sect. 3.1), task analysis (Sect. 3.2), model de-
sign (Sect. 4), system design (Sect. 5), and system evaluation (Sect. 6).

3.1 Data Description
This study employs CBDB, a large-scale open-sourced relational
database, to study cohorts in Chinese history. CBDB contains en-
riched biographical records for over 500K historical figures, spanning
from the 7th century to the 19th century. The records have been entered
and validated by experienced historians. They are multidimensional,
covering four main information types:
• Figures’ attributes: the basic personal information of figures, in-

cluding birth year, death year, place of birth, place of burial, gender,
offices, ethnicity, writing, etc.

• Figures’ relationships: the social information among figures, includ-
ing domestic, political, social, and academic relationships, such as
colleagues, friendships, kinship, peers, teacher-student, etc.

• Historical events: the event description with the time, place, and fig-
ure information. As in Fig. 3A2, Zhang Jiuling served as a prefectural
aide in 737 for the Jingzhou prefecture, Shannan circuit.

• Supplementary information: the detailed description of personal
attributes, such as location coordinates, time duration of different
dynasties, background knowledge of each dynasty (the governor
information and the bureaucratic hierarchy), etc. The amount of
information for each figure varies between 5 and 500 records.

3.2 Requirement and Task Analysis
We interviewed our collaborators about their traditional workflow to
guide our system design. The traditional historical cohort research fol-
lows a mature paradigm [5, 41], including hypothesis formulation, fea-
ture summarization, and correlation analysis as shown in Fig. 2A. Our
collaborators indicated that the traditional analysis process is energy-
exhausting and time-consuming. We summarised the system require-
ments and design tasks that empower historians with enhanced cohort
analysis capabilities, geared toward their challenges.

Fig. 2. A comparison between (A) traditional prosopography workflow
and (B) proposed workflow applied in CohortVA.

Identifying cohorts from a large-scale historical database. The
first step of cohort analysis is to define the scope of the study and for-
mulate corresponding hypotheses. To find the targeted scope, historians
need to browse and filter the massive data materials. They then need to
perform a heuristic search based on their experience and hypotheses.
Verifying a hypothesis sometimes costs researchers a few months to
read related materials repeatedly. The system should provide efficient
cohort identification based on users’ interests.

T1 Specify the initial research scope. Historians’ research interests
are motivated by different perspectives. For example, supporters
of the great man theory would be interested in a few core figures,
while those supporting geographical determinism tend to look
for location correlations [5]. Moreover, the differences in prior
knowledge about cohorts lead to different specifications. We
should support different research orientations by specifying the
initial groups in multiple ways.

T2 Generate automatic cohort identification results. Traditional
prosopography workflow in identifying groups (Fig. 2A) includes
browsing massive historical records within the research scope.
Automatic cohort identification can alleviate the burden. Since
historians might not know everything about a certain dynasty, the
automatic method should also account for reasonable ambigu-
ity. Moreover, historians appreciate various cohort candidates
complementing cohort analysis from multiple angles.

Providing visual interpretation for cohort identification results.
Historians need to cross-check the identified cohorts before using them
for further research. The system should provide a set of visual interpre-
tations to assist in result verification.

T3 Validate the concept and features that define a cohort. Histori-
ans seek variables of significance to explain a cohort’s phenomena.
The identified cohort includes the list of figures and the cohort
concept. Historians need to validate whether the cohort concept
adequately covers the associated figures. Moreover, to find the
most suitable concept, historians also want to examine alternative
features of the identified cohort.

T4 Verify the cohort from the organized historical event infor-
mation. H1-H5 emphasize that they always search for additional
evidence to verify the results of automated methods. It is nec-
essary to present historians with rich contexts that historians
frequently reference, such as geographic locations and social net-
work relationships. They can cross-check the identified cohorts
from the detailed historical event information.

T5 Inspect individual figures. Analyzing individual profiles help
historians interpret the identified cohort at the most detailed level.
All mined features and event evidence can be provided for inspira-
tion. The system should display figure profiles from CBDB with
spatial-temporal information and descriptions of social relation-
ships. Directing users to the original sources outside the system
should also enhance their trust level in the result.

Supporting iterative cohort analysis. Cohort analysis processes
are naturally iterative, and the system should be able to support them.

T6 Adapt to the revising research interests. Historians refine their
research scopes iteratively during the analytical process. Due to
different research interests, they might disagree on how features
are fused and cohorts are composed. For example, Sima Guang
and Su Shi are famous writers and political rivals in the Song dy-
nasty. When historians decide to focus on one particular political
party, cohorts containing both figures should be discarded, and
corresponding features should be remodeled. Our system should
update the cohort composition and concept recommendations
accordingly, to reflect the revised research interests.

T7 Track analytic provenance. One of the most mundane tasks
in prosopography is the inclusion of newly discovered variables.
Upon new discoveries, historians need to trace back to previous
steps to test what-if scenarios, accompanied by revisiting the same
documents repeatedly. We should support revisiting previous
progress to compare different cohort identification results.



Table 1. Explanation and extraction models for the six atomic features. Here, descriptions refer to those about the selected figures.

Atomic feature Explanation Extraction approach

TimeRange The time period in which an
event happened

Cluster the years occurred in the descriptions with DBSCAN [29]. Then, select the year
ranges with more than 30% occurrences as TimeRange features.

Location The location where an event hap-
pened

Select the top-three locations in the descriptions as Location features.

Affiliation The government institution
where figures held positions

Select the top-three offices in the descriptions as Affiliation features.

Relationship The relationship (e.g., teacher-
student) associating two figures

Construct a strongly connected relationship graph based on the descriptions. Then, select
the relationships in communities with over five members as Relationship features.

Celebrity The person mostly connected by
others

Link any two figures if they appear in the same description. Then, select the figures
linked with over 30% of the selected figures as Celebrity features.

Entity The entity, like occasions and
writing

Link a figure with an entity if they appear in at least one description. Then, select the
entities linked with over 30% of the selected figures as Entity features. Only those
entities not covered by other features are selected.

4 COHORT IDENTIFICATION MODEL

The cohort identification model discovers potential cohorts from CBDB
based on specified figures and features. As illustrated in Fig. 3A,
the model contains four steps: 1) generate the knowledge graph and
descriptions, 2) extract common features from the initial figures, 3)
select the features by their significance, and 4) fuse the selected features
as the cohort concept and filter figures by this concept.

4.1 Knowledge Graph and Description Generation

We preprocessed the raw historical data in CBDB by converting them
into a knowledge graph (Fig. 3A1), where the information is stored in
nodes (i.e., figures and entities) and edges (i.e., relationships). In CBDB,
figures and entities are structured as rows, and their relationships are as
foreign keys. For instance, in the [POSTED TO OFFICE DATA] table,
an [Posting] event is connected to [Zhang Jiuling] and an office position
entity [Prefectural Aide]. The two triplets, (Zhang Jiuling, do, Posting)
and (Posting, officeIs, Prefectural Aide), are inferred and inserted into
the knowledge graph. We identified 28 node types and 27 edge types,
and built a knowledge graph with around 1M nodes and 5M edges.

We adopted the meta-path2vec [18] algorithm to generate descrip-
tions around the figure entities. Collaborating with historians, we sum-
marized 15 description templates that express interpretable and descrip-
tive information, such as politics, occupation, and social relationships.
Meta-path2vec leverages the templates and the sequential structure of
nodes connected by edges in the knowledge graph. Compared with the
conventional random walk method [31], it uniformly generates descrip-
tions regardless of nodes’ degrees, avoiding the probability-imbalance
issue on different node types. The generated descriptions represent a
figure’s semantic contexts (see Fig. 3A2 for an example). Lastly, we
obtained about 500K figures and 1M descriptions.

4.2 Feature Extraction

We refer to the figure-related characteristics extracted from the descrip-
tions as features. Following the conventional cohort study paradigm [5],
we categorized figures’ characteristics in CBDB into six types of atomic
features, as shown in Table 1. To represent more complicated con-
texts, a composite feature is generated from multiple atomic features
via the and logical combination. For instance, the composite feature
[Location(Jingzhou) & TimeRange(737)] indicates that the figures vis-
ited the Jingzhou prefecture in 737.

At the beginning of cohort explorations, users determine a
search scope and specify an initial cohort (Fig. 3B1). These initial
figures (Fig. 3A1) are the query bases of cohort identification. We
generate atomic and composite features from their descriptions.
For instance, given the description “Zhang Jiuling served as the
prefectural aide in 737 at the Jingzhou prefecture”, we use the
TimeRange model (see Table 1) to extract the time range feature
TimeRange(737) and the Location model for location feature

Location(Jingzhou). The two atomic features jointly form the com-
posite feature [TimeRange(737) & Location(Jingzhou)]. In addition,
since Zhang Jiuling is a renowned scholar-official (further descriptions
in Sect. 6.1.2), he is extracted as the feature Celebrity(Zhang Jiuling).
The three atomic features then generate another composite feature
[Celebrity(Zhang Jiuling) & TimeRange(737) & Location(Jingzhou)].

4.3 Feature Selection
Historical records contain numerous descriptions for figures, resulting
in a large number of extracted features. However, many features are
redundant and insignificant. We adopted the Minimum Redundancy
Maximum Relevance algorithm (mRMR) [36] to select appropriate
features, which measures statistical dependencies among features.

Given an initial set of n extracted features F = { f1, f2, . . . , fn},
where fi refers to the ith feature, mRMR selects k features F∗ =
{ f ∗1 , f ∗2 , . . . , f ∗k }, which are the least redundant and the most signif-
icant. It can be individually formulated as follows:

min R(F∗) =
1
|F∗|2 ∑

f∗i , f∗j ∈F∗

f∗i 6= f∗j

PMI( f ∗i ; f ∗j ) (1)

max D(F∗,F) =
1

|F∗||F| ∑
f∗i ∈F∗ , f j∈F

f∗i 6= f j

PMI( f ∗i ; f j) (2)

where Eq. 1 aims to select independent features, and Eq. 2 aims to select
significant features. The point-wise mutual information (PMI) [15] is
applied to measure the redundancy between two features:

PMI( fi, f j) = log
p( fi, f j)

p( fi)p( f j)
(3)

where p( fi) refers to the probability that a figure has the feature fi,
and p( fi, f j) denotes the probability that the figure has both fi and f j.
Statistically, these probabilities can be estimated by the ratio of the
figures containing the features. Thus, a higher PMI indicates that the
feature pair are more dependent on each other.

We optimize both equations by a genetic algorithm [49], which
would yield multiple sub-optimal solutions. Each solution contains k
features, where k is defaulted at 5 to balance the model complexity and
representation capacity. We call each solution a feature group. For
every feature f ∗i in one feature group, the two features with the highest
PMIs are provided as the redundant features.

4.4 Feature Fusion
The selected k features allow each figure to be represented as a k-dim
feature vector vvv = [v1,v2, . . . ,vk], where vi is the frequency of fi and
vi =

N fi
Nd

, where N fi is the number of the figure’s descriptions containing
feature fi, and Nd is the total number of the figure’s descriptions.



Fig. 3. CohortVA consists of (A) a cohort identification model and (B) a visual interface. We first build (A1) a knowledge graph based on the CBDB
and extract (A2) the descriptions. Here, the example from CBDB is translated with [25] to help with the interpretation. Historians specify (A3) the
initial figures from (B1) the scope specification component. The figures and extracted descriptions are piped into the model for (A4) feature extraction,
(A5) feature selection, and (A6) feature fusion. Then our model automatically identifies (A7) the cohort figures. Generated features and figures are
presented in (B2) the cohort identification component, (B3) cohort exploration and figure details component for further interpretation and exploration.

The concept of a cohort is defined as the fusion of selected features
(Fig. 3A6). It extends the feature group by assigning a fusion weight to
each feature. We propose a weakly-supervised classifier to determine
whether a figure belongs to the cohort and learn the fusion weights. We
calculate the Cohort Score (CS) for each figure vvv, having

CS(vvv) = wwwT vvv =
k

∑
i=1

wivi (4)

where www is the fusion weights and www = [w1,w2, . . . ,wk]. The classifier
is implemented as a linear regression model for its high interpretability
and the continuous outputs for ranking purposes. The initial figures
(Fig. 3A3) are the positive training samples. The stochastic gradient
descent (SGD) optimizer is adopted in the learning process.

A figure’s membership in a cohort thus depends on its similarity
to the cohort’s concept. The higher the cohort score, the more likely
the figure belongs to the cohort. To account for a possible mismatch
from the extracted features and specified figures, every figure will be
reassigned a new label regardless of the initial group specification (T2).
A figure with a cohort score over 1.0 is included in the cohort. The one
whose cohort score is below 1.0 and over 0.5 is viewed as a candidate,
and others are excluded. A new cohort is then identified (Fig. 3A7) and
presented to historians for visual exploration (Fig. 3B3).

5 VISUAL ANALYTIC SYSTEM

We propose CohortVA to present the cohort identification results with
explanations and to support iterative exploration.

5.1 Two-stage cohort analysis workflow
CohortVA, a visual analytics system, follows a two-stage cohort analy-
sis workflow as shown in Fig. 2B. To establish the scope of study (T1),
the Scope Specification Component (Fig. 3B1) supports historians in
specifying an initial group of figures according to their research inter-
ests. The initial group is then piped into the workflow.

Cohort identification stage. Given a defined group, CohortVA
produces a series of cohort candidates using the cohort identifica-
tion model (T2). The concepts and features of the identified co-
hort candidates are validated in the Cohort Identification Component
(Fig. 3B2) (T3). Historians can compare different concepts and adjust
the features’ weights in the Cohort Analysis Provenance View. They
can also replace certain features with their redundant features in the
Cohort Feature Selection View. After validating the concepts, historians
select and focus on a cohort candidate for further analysis.

Cohort exploration stage. CohortVA lets historians explore and
refine the selected cohort from two perspectives: the cohort concept
and included figures. The figures are described by the Cohort Ex-
ploration Component and the Figure Details Component (Fig. 3B3).
Historians can cross-check the cohort composition according to histori-
cal events (T4) and detailed figure descriptions (T5). After validation,
CohortVA supports historians in excluding figures from the cohort and
including related ones in the Figure Label View.

Adjustments from either perspective will update the cohort inter-
pretation for the other. Thus, historians can iteratively refine a cohort
by piping it back to the Cohort identification stage (T6). The analy-
sis process is recorded in the Cohort Analysis Provenance View for
backtracking and testing what-ifs (T7). When the analysis result is
satisfactory, historians can export the cohort concept and the list of
included figures in CSV format.

5.2 Scope Specification Component

The Scope Specification Component (Fig. 1A) provides a control panel
for data queries to help historians quickly locate a target figure group.

Enabling flexible group queries. Four means of figure queries
are supported: 1) figures-based query, searching figures by name; 2)
ego-network-based query, starting with a core figure and expanding
with related figures; 3) condition-based query, picking out figures
with common descriptions such as year, location, and identity; and 4)
expression-based query, allowing skilled historians to write expressions
in the feature representation format (Sect. 4.2) to search for figures,
which is most flexible but challenging.

5.3 Cohort Identification Component

The Cohort Identification Component (Fig. 1B) visualizes the features
of the recommended cohorts for historians to select an appropriate
cohort and conduct the following exploration. The group features of
the search scope and the generated cohort identification schemes are
presented in the Cohort Feature Selection view and the Cohort Analysis
Provenance view, respectively.

5.3.1 Cohort Feature Selection View

The Cohort Feature Selection View (Fig. 1B1) interprets all identified
features from the initial group as the cohort concept. To facilitate
concept understanding, this view depicts each feature’s importance,
similarity, and overall distribution in feature categories. We encode the
features in different channels to make a distinction.



Fig. 4. Cohort Feature Selection View. (A) The encoding scheme for
atomic and composite features. (B, C, D) The alternative designs.

Visualizing features in colors, shapes, and thickness. The ex-
tracted features could be either atomic or composite (see Sect. 4.2). We
use different colors to distinguish the six types of atomic features (i.e.,

TimeRange, Location, Affiliation, Relationship, Celebrity, and
Entity). The composite features combine the colors of their corre-

sponding atomic features. We explicitly encode the number of atomic
features by shapes to emphasize the distinction. Specifically, triangles
represent atomic features, while squares and circles represent compos-
ite features consisting of two and three atomic features, respectively
(Fig. 4A). The border’s thickness encodes the feature’s weight.

Justification. We considered three alternative designs. The first one
(Fig. 4B) employs squares to represent atomic features and groups
multiple squares to represent composite features. However, composite
features with three atomic features occupy too much space and cause
visual confusion. We also visualized composite features with gradient
colors (Fig. 4C) and color combinations (Fig. 4D) of their atomic
features. However, the color differences are too small to be perceived
and distinguishable. Therefore, we use two visual channels (i.e., shape
and color) to enhance the distinction and perception of features.

Displaying features’ similarities. The extracted features are dis-
played in the force-directed layout. The distance between two features
is proportionate to their reciprocal PMI value (see Eq. 3). Therefore, the
distance between two features positively correlates with their similarity.
If a feature has redundant features, we link them by dashed lines. As
well as the graphical representation, a feature list is shown to view
features sequentially. In the list, features can be sorted by the count of
corresponding figures or the feature’s significance (see Eq. 2).

5.3.2 Cohort Analysis Provenance View
The Cohort Analysis Provenance View (Fig. 1B2) visualizes an
overview of multiple identified cohorts and tracks analysis provenance.

Explaining the cohort concept. The view lists features’ descrip-
tions, weights, and the number of related figures). Historians can
replace a feature by selecting a redundant feature and clicking the “re-
place” button in the Cohort Feature Selection View. Each feature’s
fusion weight can be set via the slider on top of the view.

Recording exploring iterations. Iterative cohort analysis processes
may yield multiple versions of the cohort. For each version, the view
summarizes the number of total figures, changed figures, and cohort
features for cohort comparisons across iterations.

5.4 Cohort Exploration Component
To enhance the interpretability of analysis results, the Cohort Explo-
ration Component (Fig. 1C) supports historians in validating cohorts
from the model and data perspectives.

5.4.1 Cohort Overview
The Cohort Overview (Fig. 5A) shows the cohort score (see Eq. 4)
and the labeling status of all figures in the selected cohort. Consid-
ering data scalability issues, historians need to select a sub-group of
figures of interest and check their descriptions in the Figure Feature
Validation View and the Figure Event Validation View.

Summarizing the feature distributions. The view shows the fea-
ture distribution of each figure in the selected cohort. The cohort
features confirmed by historians in the Cohort Analysis Provenance-
View are distinguished in this view by different grayscale values. For a
figure, the length of each feature represents the frequency multiplied
by the corresponding fusion weight (Sect. 4.4). To focus on a certain
feature, historians can sort figures according to the feature’s value.

Summarizing figure labels. CohortVA employs a multicolored bar
to group figures included in the cohort (colored in blue), candidate
figures (colored in ? purple), and excluded figures (colored in pink)
on the left of the view. It shows the status of the labeling progress and
gives an overview of the labeled figures.

Justification. We tried to encode the figure distribution with colors
used in the Cohort Feature Selection (Fig. 1B1). However, the multiple
colors of composite features did not scale well with the large number
of figures, similar to the alternative design in Fig. 4B. The numerous
colors distracted historians from other views, and the limited screen
space also poses challenges in distinguishing features. Thus, we unified
the features and colored them with different shades of gray.

5.4.2 Figure Feature Validation View
The Figure Feature Validation View (Fig. 1C2) shows model-related
information of the sub-group selected in the Cohort OverviewView in a
dual column structure. The Figure Feature View (Fig. 5B) in the left
column illustrates a detailed feature distribution. Besides the zoomed-
in figure distribution, a histogram is employed to reflect the number of
figures with each feature. The Figure Label View (Fig. 5C) in the right
column lists the labels of each figure. Historians can modify labels and
guide the cohort identification model to update the cohort.

5.4.3 Figure Event Validation View
The Figure Event Validation View (Fig. 1C3) visualizes the life expe-
rience of each figure by demonstrating five categories of events (i.e..,
politics, academic, religion, sociality, and military) of concern for histo-
rians. We use color encoding to distinguish the five categories. Detailed
event descriptions from five perspectives are described below:
• Category: Each row in the Figure History View (Fig. 5D) shows the

events in a historian-selected category of a figure. The events are
visualized by a thin bar, of which the horizontal position encodes
the time of the event. A row with dense bars indicates that the
corresponding figure was recorded significantly in the category. The
time spans of all rows are aligned to support event comparisons.

• Frequency: The Event Ranking View (Fig. 5E) shows the total number
of events and the top three categories of events ranked by quantity. It
provides an overview of the figure’s identity characteristics.

• Relationships: The Relationship Matrix View (Fig. 5F) employs a
45-degree-rotated matrix to show the relationship among figures. The
element in the ith row and jth column represents the events involving
the ith and jth figure. The shades of color encode the event quantity.
Since the ordering of matrix visualization has an extensive influence
on local structure discoveries [44], we adopted the Girvan Newman
algorithm [34], a betweenness-based community detection method,
to sort the grids and highlight figures with closer relationships.

• Location: The Event Map View (Fig. 1C3-4) shows the geographic
distribution of all events by circles. The circle size encodes the
number of events that happen at a location. Clustered circles highlight
the region’s importance to the cohort.

• Time: The Event Timeline View (Fig. 1C3-5) shows the temporal
distribution of events. If historians choose a specific year, the detailed
information of events happening this year will be displayed for further
exploration and validation.

5.5 Figure Details Component
The Figure Details Component (Fig. 1D) provides historians with
detailed descriptions (i.e., background information and hyperlinks to
original source) of a selected figure. The figure’s identified features
are listed in the view for reference. The information helps historians
develop an in-depth understanding to make a labeling decision.



Fig. 5. The Cohort Exploration component. Historians can shortlist figures from (A) the cohort overview. The (B) figure features, (D) figure history, (E)
figure events, and (F) figure relationships views provide supporting information for feature- and event-based validation. After cross-checking from
both perspectives, historians can label the figures in the (C) figure label view.

6 EVALUATION

We conducted two case studies and eight expert interviews to verify the
effectiveness and usefulness of our CohortVA.

6.1 Case Studies

We invited the historians mentioned in Sect. 3.2 to explore CohortVA
freely according to their research interests and intentions. We encour-
aged historians to adopt the think-aloud protocol and recorded how
they used our system, as described in the following two cases.

6.1.1 Case1: Verify the Neo-Confucianism in Song

The research interest of H4 lies primarily in Neo-Confucianism theory
in the Song dynasty. To verify the cohort identified by the traditional
prosopography workflow, H4 leveraged CohortVA to explore the Neo-
Confucian cohort in the Song dynasty.

Specify the initial cohort of interests. With clear goals in mind,
H4 first initialized the figure group through the conditional queries of
‘Song’ and ‘Neo-Confucianists’ in the Scope Specification Component
(T1). CohortVA returned 588 figures satisfying the conditions. Then,
the cohort identification model (Sect. 4) recommended cohorts in the
Cohort Identification Component (Fig. 1B) for further analysis (T2).

Cohort identification. To select an appropriate cohort candidate,
H4 first observed the cohort feature distribution in the Cohort Fea-
ture Selection View (Fig. 1B1), where several feature clusters ap-
peared. These clusters contained atomic features (e.g., Writings,

Neo-Confucian, Zhu Xi) and composite features that are mostly
related to Zhu Xi, the most famous Neo-Confucianist in the Song
dynasty (T2). H4 also noticed an outlier feature Fujian Lu. H4 in-
dicated that this location feature is significant to the Neo-Confucian
cohort because ‘Zhu Xi’ was born and raised in ‘Fujian Lu.’ Moreover,
after ‘Zhu Xi’ resigned from the government, he ran colleges to preach
Neo-Confucianism in ‘Fujian Lu’ for forty years. Since ‘Zhu Xi’ was
the core figure, H4 further explored the cohort candidate related to

Zhu Xi in Fig. 1B2. One of the five identified features of the cohort
candidate is Song Dynasty, which is too coarse to filter effectively.
Thus, H4 replaced it with the redundant feature Fujian Lu (T3).

Cohort exploration. After determining the cohort features, H4
started to validate the features and refine the figures in the Cohort
Exploration Component (Fig. 1C). In the Cohort Overview (Fig. 1C1),
H4 re-sorted the figures according to the feature Writings, because
authorship was an important characteristic in Neo-Confucianists. Then,
H4 screened out the 226 figures with the least cohort scores, and clicked
the ‘academic’ button to observe the writing events that occurred in
their lives in the Figure History View (Fig. 1C3-1). It turned out that
these figures rarely authored writings or participated in academic events,
so H4 excluded them from the cohort (T4).

As shown in the Figure Label View (Fig. 1C2-2), the figures with the
highest cohort scores include several representative Neo-Confucianists,
such as ‘Zhu Xi,’ ‘Lu Jiuyuan,’ ‘Lv Zuqian,’ and ‘Huang Gan.’ How-
ever, H4 spotted a few included figures that are not Neo-Confucianists
when browsing figure descriptions. For instance, the figure ‘Xin Qiji’
has not contributed to the spread of Neo-Confucianism theory. ‘Xin
Qiji’ was misidentified due to his close political relationship with ‘Zhu

Xi,’ as shown in the Relationship Matrix View (Fig. 1C3-3). H4 manu-
ally excluded the figure after validating with the events (T5). To focus
on core Neo-Confucianists and reduce cohort size, H4 also excluded
337 less significant figures with less than one hundred events.

Next, H4 checked the spatio-temporal descriptions of the figures.
The Event Map View (Fig. 1C3-4) demonstrated that figures in this
cohort had recorded events in more than 500 places. Most of the events
were clustered in ‘Fujian Lu,’ which proves the importance of the
feature Fujian Lu. In the Event Timeline View (Fig. 1C3-5), the time
feature 1177,1181 attracted H4’s attention due to a sudden surge in
events. After hovering over the bar corresponding to the time range,
H4 found that all these events involve ‘Zhu Xi.’ For example, ‘Zhu Xi’
re-built the Bailudong College [48] (one of the four ancient academies
in China) in 1179. H4 considered it a milestone event for the spread of
Neo-Confucianism.

Fig. 6. The identified cohort and concept for Case1. (A) An overview of
the new features after the first update. (B) The final cohort and concept.

Iterative exploration. Through the above steps, H4 clicked on the
‘update’ button in the Cohort Exploration View (Fig. 1C), then the
system performed the second automatic identification and recommen-
dation in the Cohort Analysis Provenance View (Fig. 1B2) (T6). New
features were selected based on this new cohort. In the Cohort Feature
Selection View (Fig. 1B1), H4 found more interesting features, such
as Ritual Texts (the literature embodying Neo-Confucian theories),

Postface written for book by, and a more precise time feature 1178,
1181 (Fig. 6A). H4 added them into the cohort features (T6). H4
checked the recommended figures in the Cohort Exploration View and
verified that they align with the cohort concept.



Lastly, H4 was satisfied with the cohort having 23 core figures and
the more precise concept, as shown in Fig. 6B. Together with some
interesting features in previous iterations (T7), they were exported in
CSV format from the Cohort Analysis Provenance View (Fig. 1B2). H4
would further investigate how these figures spread Neo-Confucianism in
the Fujian Province. The exported cohort would be cross-checked with
other data sources (e.g., local chronicles in the Intelligent Antiquities
Platform [17]) and verified with other research literature.

This case shows that CohortVA can help historians quickly identify
the central figures and important events in the cohort. It provides
historians with new perspectives to study the spread of theories.

6.1.2 Case2: Explore the Politics in Poetry

H2 is interested in the history of the Tang Dynasty. In this case, H2
explored the associations around ‘Zhang Jiuling,’ a famous scholar-
official and poet, and the corresponding social influences.

Specify the initial cohort of interests. H2 used the figure-based
query to choose figures related to ‘Zhang Jiuling’ in the Scope Specifi-
cation View (T1). 46 figures were selected from 500K historical figures.
Then, in the Cohort Feature Selection View, CohortVA recommended
several cohort candidates whose features were mainly political and
literary (T2). H2 selected a cohort with the most political and literary
features in the Cohort Analysis Provenance View for further exploration
(T3). Besides the feature Zhang Jiuling, H2 noticed three identified
features of this cohort: 1) Examination indicating that the figures had
become bureaucrats through the imperial examinations; 2) Jingzhao
reflecting that this group had frequently been active in ‘Jingzhao Fu,’
the official designation of the Tang’s dynastic capital; 3) Presented
literary composition as a gift to demonstrating the prevalent literary
culture among the cohort (Fig. 7A) (T3).

Cross-checking and refining the selected cohort. H2 selected the
figures with the highest cohort scores and checked their profiles (T5).
H2 found that a large proportion of these figures were high-ranking
officials. For example, ‘Li Longji’ and ‘Zhang Yue’ (Fig. 7B1) were
the emperor and the prime minister of the Tang dynasty, respectively.
The event distributions in the Figure History View showed that the
political and academic events were the most frequent event types (T4).
Combined with the relational information in the matrix (Fig. 7B3),
H2 concluded that the tight clique of ‘Zhang Jiuling’ had been deeply
associated with academics and politics, especially the political power
center of the Tang Dynasty. H2 removed the figures with less than five
academic or political events recorded (Fig. 7B2).

After clicking the ‘update’ button, the percentage of figures with
the feature Examination had increased, and a new feature Poet had
appeared (T6). In the Relationship Matrix View (Fig. 7B3), most of
the interactive events about these figures were related to ‘Poetry as a
gift,’ a more precise description than ‘literary composition.’ From the
analysis result, H2 suspected that poets could bond with officials in
the Tang Dynasty by presenting poetry. Favored by the officials, these
poets could gain an advantage in the imperial examination for selecting
state bureaucrats. For example, ‘Zhang Jiuling’ ingratiated himself
with ‘Zhang Yue’ and ‘Li Longji’ by writing poems. When he became
the prime minister, other poets started writing poems for him as well.
Besides, a new feature 710, 712 appeared after the update. Looking
at the Event Timeline View (Fig. 7C), H2 found that most figures of
this cohort gained government positions during this period, where 96
events were recorded. H2 recalled that the Tang Long coup occurred in
710, after which the regime alternation caused significant bureaucratic
alternations. After comparing with other cohorts in previous iterations,
H2 decided to include this feature (T7).

Export the exploration results. Finally, H2 exported the explo-
ration results. H2 obtained a refined cohort (consisting of 17 figures)
and derived its completed concept as in Fig. 7D. H2 wanted to deter-
mine if this cohort was united in their political views. Therefore, he will
consult the official documents of the Tang dynasty on The AiRuSheng
Platform [2] to further explore the influence of this cohort in politics.

This case shows that CohortVA enables historians to obtain a more
comprehensive understanding of the cohort and discover hidden con-
nections between features.

6.2 Historian Reviews

To evaluate the effectiveness of CohortVA, we invited eight historians
(i.e., three professors (H1-H3) and five PhDs (H4-H8)) to participate
in the interview. We collaborated with H1-H5 for two years, as men-
tioned in Sect. 3. They participated in multiple design iterations of the
CohortVA. Three historians (H6-H8) work on historical research on the
Tang, Song, and Ming dynasties, respectively, using CohortVA for the
first time. H1-H6 are familiar with the CBDB and digital tools (e.g.,
Gephi and Netdraw) for historical research. H7 and H8 indicated that
they mainly employed paper-based historical documents in their daily
research. We interviewed three historians (H1-H3) online. Face-to-
face interviews were conducted for others (H4-H8). None of the eight
participants were co-authors of this manuscript.

Procedure. Initially, each interviewee was asked to fill out a consent
form and a demographic questionnaire about their background. Then,
we completed the following steps to collect their comments.
• Training (20 min). We introduced our motivation, related definitions,

the cohort identification model, and visual designs following the
visualization introductory description guidelines [51].

• Freeform Exploration (45min). We let historians explore our system
freely. During the exploration, historians were encouraged to adopt
the think-aloud protocol. Their exploration processes were recorded.

• Interview (20 min). We asked them to evaluate our system from three
aspects, i.e., the effectiveness of the approach, the reliability of the
result, and the usability of the system.
Effectiveness of the approach. All historians agreed that their

research could benefit from the proposed analysis approach. Five histo-
rians (H2, H4-H7) pointed out that CohortVA can significantly improve
research efficiency. H5 mentioned that they usually missed significant
features and made tremendous efforts to re-identify features after initial
explorations. Automatic feature extraction can free them from exhaust-
ing concept extractions and allow them to focus on other important
tasks, like analyzing the causes and effects. H4 said, “CohortVA acts
like a reference book that I will refer to at different research stages.”
Despite the preference for traditional research methodologies, H8 was
interested in using CohortVA to explore unfamiliar areas for efficient
explorations and inspiration. H3 affirmed the significance of our work
and believed that CohortVA is an appropriate teaching tool for history
classes. Besides, H2 suggested that our approach should further support
comparing multiple cohorts, which would be one of our future works.

Reliability of the result. Historians must validate the model output
before applying the output in historical research. H5 and H7 indicated
that the Cohort Exploration Component (Fig. 1C) favored them in
understanding the extracted cohort features. As mentioned in Sect. 6.1,
contextual information helps historians understand why Fujian Lu
is included in cohort features. H5 and H6 argued that visual designs
and interactions facilitate the connection between interpretation and
context. H2 and H4 indicated that adding a hyperlink in the Figure
Details Component (Fig. 1D) was a great function for checking the
original material. H3-H8 pointed out the limitation of a single data
source and expressed the wish to introduce more data sources, including
user-defined data for cross-checking.

Usability of the system. Historians agreed that each view was well-
designed. Among all visual forms, historians (H2-H5) considered Event
Map View (Fig. 1C3-4) to be the easiest to use, believing it has ”the most
distinct visualization characteristic and the most concise data presenta-
tion.” H3 suggested providing maps of different historical dynasties to
support exploring various research targets. The Event Timeline View
(Fig. 1C3-5), visualizing events number in each year, was also popular
among historians. Although other visualizations, such as the Cohort
Feature Selection View (Fig. 1B1) and the Relationship Matrix View
(Fig. 1C3-3), require some learning costs for historians unfamiliar with
data visualization and analysis, H2 commented on them as being valu-
able visualization projects, “digital humanities will inevitably be more
complex but powerful to support complicated analytical tasks.” H4
particularly preferred swift interaction designs, like the filtering and
sorting functions in the Cohort Overview View and the tagging function
in the Relationship Matrix View.



Fig. 7. Exploration process. The initial figures and features of Zhang Jiuling (A) were identified. Then H2 explored the political and academical
relationships between these figures (B), and noticed an event outburst (C). After an update, H2 obtained the refined cohort concept (D).

7 DISCUSSION

This section summarizes the lessons learned from working with histori-
ans, as well as the limitations and future work of CohortVA. Through
collaborations with historians, we have summarized three design impli-
cations for digital humanities (CAD):

Comprehensibility. Historians prefer easy-to-understand and sim-
ple visualizations. Being used to reading a large literature base, they
feel more familiar with concrete wordings than abstract visual forms.
In our design, we contextualize the generated descriptions with con-
ventional visualizations to simplify the paradigm shifts from reading
to perceiving. Moreover, historians are more willing to adopt visual-
izations that require higher learning costs when presented with clear
usage benefits. For example, for the Relationship Matrix View, we
used a matrix ordering algorithm to cluster similar groups and encoded
relationship types with colors. The efficiency in pattern mining has
drawn historians’ interest in studying. As H3 indicates, “we can quickly
discover the types of social relations between figures through the colors
on the matrix, which is very novel.” However, visual uncertainty should
be used with caution because some historians are conservative about
probabilistic inference and favor definite evidence.

Authenticity. We have identified four ways to enhance historians’
trust and confidence in the method, process, result, and data. 1) Re-
producing cohorts that agree with existing theories can increase the
methods’ trustworthiness. It directly verifies functional completeness
and correctness. 2) Steering results iteratively give historians more
confidence in the process. In CohortVA, historians gradually apply
their prior knowledge and expertise to annotate and validate the recom-
mended figures. The smaller gaps between iterations help them infer
the different results. H3 highly appreciates the provenance tracking
function, “which helps me to trace back and adjust my hypotheses for
further research.” 3) Providing organized information across various
perspectives enhances the result’s confidence. Historians emphasize
cross-checking the automatic analysis results to reduce biases and misin-
formation. 4) Displaying and providing access (e.g., hyperlinks) to the
original data sources are important features in building trust in the data.
Historians value the authenticity of the original textual documents.

Diversity. Since the ancient documents and historical data span
thousands of years, special attention should be paid to the diversity
in the underlying spatial and temporal contexts. For spatial contexts,
map visualizations should be aware of landscape changes. For example,
the Yellow River has undergone six major avulsions (i.e., changes
in river’s course) in history. Ancient times’ regional landscapes and
geographical characteristics have notable differences from their modern
counterparts. Also, the territorial changes in different dynasties would
create trouble recognizing and understanding historical events with
modern maps. Therefore, we could provide terrain or historical maps
for reference [40], as suggested by H2.

For temporal contexts, besides the missing data and uncertainty
issues [53], we came across the subtle semantic changes in interpreting
entities. For instance, the “Prefectural aide” in Fig. 3A2 was represented
as “Zhang Shi” in CBDB. From the Qin to Song dynasty, “Zhang Shi”
meant the government aide, while it became the administrator from
the Yuan dynasty and on [25]. We used composite features to capture

these differences implicitly and relied on domain knowledge to spot
the difference. H1 suggested that additional knowledge representations
could be adopted from existing theories and structured dictionaries [25]
to provide appropriate contexts and reduce ambiguity.

7.1 Limitations and Future Work
We outline the current limitations to be addressed in future work.

Data source. The current system only employs a single data source.
Validation with multiple data sources can further strengthen the inter-
pretability of cohort features. In the future, it should combine with
other large-scale databases or self-defined knowledge bases. We could
define more description templates for knowledge graph completion, but
entity alignment is still a challenging problem.

Cohort comparison. The current system does not provide com-
prehensive comparisons among cohorts. Analyzing a single cohort
limits the research scope and could be biased. Cohort comparison is a
complex analysis task we will pursue in our future work.

Quantitative evaluation. Historians agree that our work can im-
prove their trust in machine learning results, but the claim can benefit
from a quantitative evaluation. For example, measuring the decision
time and compliance with the recommended results provide viable
metrics for comparison with other systems.

Generalizability. In this work, we mainly cooperated with histori-
ans and developed a bespoke tool for them. Due to different require-
ments, the interface and specific parametric settings cannot be easily
applied to other domains. However, the CohortVA workflow is gener-
alizable to domain-specific tasks targeting closely related groups. By
properly defining the features, it can process large text corpora and rela-
tional databases for many domains, such as medicine [13], finance [32],
and literature analysis [54]. For example, social network relationships
and social media posts can replace the history corpus in our system for
identifying different social groups among users.

8 CONCLUSION

In this paper, we present CohortVA, an interactive visual analytic sys-
tem for historians to identify and explore historical cohorts. Given an
initial group of figures, the cohort identification model in CohortVA
automatically extracts their common features and identifies potential
cohorts to improve the efficiency of historians’ research. The visual
interface of CohortVA provides various supporting information to help
historians cross-check these results, fostering trust in the system and
a deeper understanding of cohorts. Two case studies and the historian
interviews demonstrate the usefulness and effectiveness of our sys-
tem. We summarized the lessons learned for developing CohortVA and
believe that these design implications will guide system designers in
dealing with historical data and working with historians.
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